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Abstract. Solving problems, which are presented as games can help find solutions to complex 
tasks, which are divided into subtasks. In this article Reinforcement learning is applied in order 
to find the solutions to some logic games. Experiments on the training of the modeled agent 
with different values of the learning parameter have been performed and conclusions have been 
drawn. 

1.  Introduction 
Reinforcement learning is a type of learning, in which a trainee learns what to do, namely how to 
make a match between a situation and an action, so as to maximize a numerical reward received as a 
signal. The trainee has to discover which actions result in the highest reward and attempt to employ 
them. When choosing an action, not only the immediate reward is taken into account, but also the next 
situations and the future rewards [1]. 

The one being trained is the agent. The agent is implemented through a program, which 
implements the function of the agent. The function of the agent makes a match between what the agent 
perceives and the actions, which it takes. All Reinforcement learning agents have explicit goals, they 
can detect aspects of their environment and can choose actions, which influence it [1].  

In the real world reinforcement learning [5] is used for Traffic Light Control [6], in robotics [9], for 
optimizing chemical reactions [10], Display Advertising [7], to solve different games [11]. 

In the field of artificial intelligence, classical puzzles, games and problems are often used as toy 
problems [2,8]. These include sliding-block puzzles, N-Queens problem, missionaries and cannibals 
problem, tick-tack-toe, chess, Tower of Hanoi and others. In this article the Reinforcement learning 
algorithm is applied in order to find a solution to several games and problems, some of which are: 
Tower of Hanoi, Solving a maze [4], Farmer crosses river puzzle, Missionaries and cannibals problem 
[3]. 

2.  Realizing the training of the agent 
In order to carry out the training process, the learning agent is given: The environment model (fig.1); 
The rewards model; the behaviour function of the agent; A value of the learning parameter.  

2.1.  Environment model 
The environment model represents a graph of the environment states. For example when modelling the 
problem of finding a solution to the Missionaries and cannibals puzzle, the vertices of the graph are 
the possible states and the edges show which states can be transitioned between (fig. 1). 
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2.2.  Rewards model 
The rewards model is necessary to give the agent a goal. For example when the goal is for all objects 
to cross a river from the east coast to the west coast, then the agent will receive a reward only when all 
the objects reach the west coast. 

2.3.  The behaviour function of the agent 
The current state is evaluated when choosing a given action, in other words the benefit of taking a 
certain action, given a certain state is calculated. To accomplish this the following needs to be taken 
into account 1) the immediate reward, which the agent receives when choosing the action in question, 
given a certain situation R(state, action); 2) the evaluation of the best action, which the agent can take 
in the next state, in which it will arrive if it takes the action in question, given the situation: 
Max[Q(next state, all actions)]; 3) the value of the learning parameter ϒ , which is in the interval 
between 0 and 1 (0 ≤ϒ< 1). If ϒ is closer to zero, the agent would prefer to only go after the 
immediate reward. If ϒ is closer to one, then the agent will put higher priority on the future reward.  

The agent training formula is as follows: 
Q(state,action)=R(state,action)+ϒ.Max[Q(next_state,all_actions)] 

2.4.  Modelling the memory of the agent 
The memory of the agent is represented by a Q matrix. The rows of the Q matrix represent the current 
state of the agent, and the columns are the states, in which the agent can go.  

At the start it is assumed, that the agent has no knowledge, so all elements of the Q matrix are equal 
to zero. The values of the Q matrix are changed by applying the virtual agent training formula. 

3.  Realized reinforcement learning algorithm steps  
1. The learning parameter ϒ is assigned a value and a matrix with the rewards, which will be received 
from the environment R, is set. 
2. The initial values of the Q matrix (the memory model of the agent) are set to zero 
3. For every episode: 

- A random initial state is selected 
- The following steps are repeated until the goal is reached: 

One of the multiple possible actions from the current state is selected. 
The state in which the agent will go, based on the selected action, is examined. All possible 

actions from this next state are examined. The highest action value for this next state is taken.  
> The current state is evaluated based on this choice of action. The immediate reward is 

taken into account as well as the highest evaluated action which can be taken in the next state 
where the agent will arrive with this choice of action: 

> The next state is set as current 
- End of the loop 

4. End of the episode 

4.  Functions of the program realization 
The used development environment is Visual Studio.NET and the programming language is C#. 

The following, more important, functions have been realized: 
find_naslednitzi - a function to find all possible actions for a given state 
biggest_naslednik - a function to find the action with the highest numerical reward(max).  
calculate - calculates the aforementioned virtual agent training formula Q(state, action) = R(state, 

action) + ϒ. Max[Q(next state, all actions)].  
learning - fills the Q matrix – the memory of the agent. 
testing - derives the optimal solution to a given game. 
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Fig. 1. Model of the environment of the Missionaries and cannibals problem. 
 

5.  Experiment and experimental results 
Experiments on the training of the modelled agent with different values of the learning parameter have 
been performed and conclusions about the number of necessary training episodes have been drawn. It 
was experimentally revealed, that when the values of the training parameter are close to 0, the 
modelled agent cannot be trained. This is the case, because in this scenario the immediate reward is 
primarily taken into account. In this case the evaluation of the states does not change, regardless of the 
number of episodes.  

Therefore for a successful training it is required to not only take into account the immediate 
reward, but also the future reward. That is why the value of the learning parameter has to be close to 1. 
It was experimentally revealed, that the quickest and most successful training happens when the 
learning parameter is ϒ = 0.8. This is a value close to 1, at which the future reward plays a bigger role 
in the training process. At values of the training parameter in the order of ϒ = 0.85; ϒ = 0.80; or ϒ = 
0.70  the training is successful even after a number of episodes in the order of 100 - 200. The maximal 
number of episodes, at a learning parameter of 0.8, for each of the implemented games, is given on fig. 
2. After this number of episodes the evaluations of the states do not change. That is to say the training 
does not go on for an infinite amount of time.   
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Name of the game Number of episodes 
Tower of Hanoi 600 
Maze 800 
Farmer crosses river 400 

Missionaries and cannibals 900 
 

Fig. 2 Maximal number of episodes when training the modelled agent. 

6.  Conclusion 
In this article the implementation of a Reinforcement learning algorithm and its application for finding 
the solution to logic games are examined. Experiments about the training of the modelled agent at 
different values of the learning parameter have been performed.  

It was experimentally revealed, that the successful training requires taking into account not only the 
immediate reward, but also the future reward. This is achieved through setting a value of the learning 
parameter close to one. It was experimentally revealed, that the training is fastest when the learning 
parameter is ϒ = 0.8. In order for the algorithm to work the following has been created for each game: 
Environment model; Rewards model; The behaviour function of the agent; the learning parameter is 
given a value. 
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