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Abstract. The paper presents an advanced algorithm guaranteeing optimal speed execution of 
FPGA based Canny gradient direction computations on the platform of total mathematical 
accuracy. The proposed algorithm’s speed capabilities are experimentally tested and analyzed 
in terms of the two capital parameters: maximum clock frequency and minimum clock cycles 
required for obtaining a mathematically exact result at the highest clock rate. Proved is the 
algorithm’s relevance to designing a novel organization of FPGA based Canny computations 
targeting optimal performance.       

1. Introduction 
The two basic requirements for FPGA based Canny are: optimizing execution speed and guaranteeing 
detected contours’ precision. The former depends on both the maximum clock frequency Canny is 
capable of operating at and the minimum number of clock cycles needed to secure an exact result at 
the highest achievable clock rate. Mapped contours’ genuineness is a function of the mathematical 
accuracy of calculations in every single Canny module. 

Gradient direction has a key role in computing the exact local maxima. Therefore, all of the 
obtained gradient direction values should be mathematically accurate. The integer arithmetic utilized 
in the gradient direction computations should be up to the highest clock frequency FPGA based Canny 
is executed at. In FPGA based Canny gradient direction and gradient magnitude computations are 
executed in parallel. Non-maximum suppression is a neighbourhood operation whose pipelining 
efficiency depeds on the number of clock cycles required to calculate a gradient direction value. 

The objective is to present an advanced algorithm capable of guaranteeing optimal speed execution 
of FPGA based Canny gradient direction computations on the platform of total mathematical accuracy. 
The task is to describe the proposed algorithm in terms of its computational mechanism and explore its 
performance with respect to the two capital speed parameters: maximum clock frequency and 
minimum clock cycles required for obtaining a mathematically exact result at the highest clock rate. 
Relevant to the conducted experiments and conclusions arrived at are only gray-scale images. The 
software tool employed to ascertain the differences between gradient direction exact mathematics and 
the available computational approaches is Scilab. The targeted hardware is Intel (Altera) FPGAs. The 
following ten Intel (Altera) FPGA families are used in the tests: 130 nm, 90 nm, 65 nm, 40 nm, 28nm 
Cyclone, Cyclone II, III, IV, V; 130 nm, 90 nm, 65 nm, 40 nm and 28nm Stratix, Stratix II, III, IV, V. 
Intel (Altera) Quartus, ModelSim and TimeQuest Timing Analyzer are utilized for exploring the 
feasibility and practicality of the proposed algorithm. 
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2. Survey of the available approaches 
Inasmuch as there are eight surrounding pixels in the 3x3 neighborhood, there are four possible axes 
determining the gradient directions. Therefore, all calculation results are reduced to four values: 0, 45, 
90, 135. They represent bisectors of eight angular sectors, each of them encompassing exactly 45°.  
     So far, there has been no mathematically accurate FPGA hardware inplementation of gradient 
direction.  In the literature [3][7], it is generally stated that calculating gradient direction by using the 
exact mathematics 
 

                                                      , 
where 

                 Gy   is  the y gradient,  and   , 
                 Gx   is  the x gradient,  and                                                                           (1) 
 
is very difficult to inplement in hardware, and (1) is too slow to be used in real-time applications. On 
that basis, until now, in all of the described FPGA based Canny realizations (1) is replaced with 
approximation. The latter is represented by four main variants [1][2][4][5][6]. Their deviations from 
(1) for the four relevant directions: x- and y-axes, positive and negative diagonals, are obtained by 
using purposely designed programs written in Scilab. The results in both numerical and percentage 
terms are exhibited in the tables below. 
 
Table 1. Difference between the total number of gradient direction values and the number of results 
calculated by utilizing (1) and approximation variants. ( ‘’-’’ denotes that the value is smaller and 
‘’+’’ denotes that the value is larger than the number of all possible combinations). 

 
 

Approach 

 
 

Gx 

 
 

Gy 

Total number 
of gradient 

direction values in 
[-255, 255] 

Total number of 
results for 
gradient 

directions  0, 45, 
90, 135 

Difference in total 
number of results 

in numerical 
terms 

Difference in total 
number of results 

in percentage 
terms 

Exact 
math 

[-255, 255] [-255, 255] 261121 261121 0 0% 

Approx. 
var. #1 

[-255, 255] [-255, 255] 261121 206659 - 
54462 

- 
20.8% 

Approx. 
var. #2 

[-255,  255] [-255, 255] 261121 261122 + 
1 

0% 

Approx. 
var. #3 

[-255, 255] [-255, 255] 261121 262144 + 
1023 

+ 
0.4% 

Approx. 
var. #4 

[-255, 255] [-255, 255] 261121 106696 - 
154425 

- 
59.1% 

 
 
Table 2. Difference between gradient direction values calculated by (1) and those computed by  
approximations. The number for direction 0 includes all cases wherein Gy = 0 and Gx = 0.  (‘’-’’ 
denotes that the number of results calculated by (1) is larger and ‘’+’’ denotes that the number  
of results calculated by (1) is smaller than the number computed by using approximations). 

Ascertained  number of values by 
directions 

Difference by directions in numerical 
terms   

 
Approach 

 
Gx 

 
Gy 

Total 
number 

of 
results 

0 45 90 135 0 45 90 135 

Exact 
math 

[-255, 
255] 

[-255, 
255] 

261121 66046 65025 65025 65025 - - - - 

Approx. 
var. #1 

[-255, 
255] 

[-255, 
255] 

206659 49471 78736 0 78452 - 
3366 

+ 
349 

- 
51816 

+ 
371 

Approx. 
Var. #2 

[-255, 
255] 

[-255, 
255] 

261122 130562 511 129540 509 + 
77725 

- 
77876 

+ 
77724 

- 
77572 

Approx 
Var. #3 

[-255, 
255] 

[-255, 
255] 

262144 130562 1021 129540 1021 + 
77725 

- 
77366 

+ 
77724 

- 
77060 

Approx. 
var. #4 

[-255, 
255] 

[-255, 
255] 

106696 53349 511 52327 509 + 
512 

- 
77876 

+ 
511 

- 
77572 
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Table 3. Difference between gradient direction values calculated by (1) and those computed by 
approximations The values for direction 0 include all cases wherein Gy=0 and Gx=0. (‘’-’’ denotes 
that the number of values calculated by (1) is larger and ‘’+’’ denotes that the number calculated by 
(1) is smaller than the number computed by using approximation). 

 
Ascertained  number of values by 

directions 

 
Difference by directions in percentage 

terms   
 

 
 

Approach 

 
 

Gx 

 
 

Gy 

 
Total 
count 

of 
results 0 45 90 135 0 45 90 135 

Exact 
math 

[-255, 
255] 

[-255, 
255] 

261121 66046 65025 65025 65025 - - - - 

Approx. 
var. #1 

[-255, 
255] 

[-255, 
255] 

206659 
 

49471 
 

78736 0 78452 - 
6.4 % 

+ 
0.5% 

- 
100% 

+  
0.5% 

Approx. 
Var. #2 

[-255, 
255] 

[-255, 
255] 

261122 130562 511 129540 509 + 
59.5% 

- 
99.4% 

+ 
60% 

- 
99/4% 

Approx. 
var. #3 

[-255, 
255] 

[-255, 
255] 

262144 130562 1021 129540 1021 + 
59.5% 

- 
98.7% 

+ 
60% 

- 
98.7% 

Approx. 
var. #4 

[-255, 
255] 

[-255, 
255] 

106696 53349 511 52327 509 + 
1 % 

- 
99.4% 

+ 
1% 

- 
99/4% 

 
     Tables 1, 2 and 3 show that all approximations demonstrate a huge shortage of calculated results, as 
well as sharply disproportional distribution of computed values by directions. They are completely 
inappropriate for demanding applications of FPGA based Canny. 

3. The proposed gradient direction algorithm  
The algorithm includes the following sequence of steps: 
1) Determine all possible combinations between the signs of Gy and Gx. Their number is . 
2) The combinations from step 1) are divided into two sets. 
3) One of the sets from step 2) includes the following relations: 
 
                                   Gy > 0  &  Gx > 0                 Gy < 0  &  Gx < 0  .                                               (2)                                                
 
4) The other set defined in step 2) includes the following relations: 
 
                                  Gy > 0  &  Gx < 0                  Gy < 0  &  Gx > 0  .                                               (3) 
 
5) Determine the two angles from the unit circle that define four angular intervals in which the x and y 
axes, the positive and negative diagonals are bisectors.. These angles are 22.5° and 67.5°. 
6) Determine the exact numerical equivalent to angle 22.5°. The accurate representation of angle 22.5° 

is the fraction   ( = 22.500605394851°). Then, determine the exact numerical equivalent 

to angle 67.5°. The accurate representation of angle 67.5° is the fraction  ( = 
67.500605394851°).  Figure 1 shows that.   
                                               

                                                                                                                                                                                                                                                                                                                                      

                                                                   Gy>0     Gy>0                                                                                                                                
                                                                   Gx<0     Gx>0                

                                                                                                                              
                           
                                                           Gy<0      Gy<0 

                                                                  Gx<0      Gx>0 
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Figure 1.  The two reference points and sign options for dividend and divisor 

 
7) Takimg into account the set of sign relations defined in step 3), the gradient direction calculation is 
based on  
                 Gy > 0  &  Gx > 0   
                 Gy < 0  &  Gx < 0 
                 If    |Gx|*99   |Gy|*239                                              GD  =    0 . 
                 If    |Gx|*99   <  |Gy|*239  &  |Gx|*169 > |Gy|*70        GD  =   45 . 

                 If    |Gx|*169  |Gy|*70                                                GD  =   90.                                      (4)               
 
8) With respect to the set of sign relations defined in step 4), the gradient direction calculation is based 
on: 
                 Gy > 0   &  Gx < 0  
                 Gy < 0   &  Gx > 0   
                 If    |Gx|*99   |Gy|*239                                              GD =      0 . 
                 If    |Gx|*99   <  |Gy|*239  &  |Gx|*169 > |Gy|*70        GD  =  135 .          

                 If    |Gx|*169  |Gy|*90                                                GD =    90 .                                     (5) 
 
     In Intel (Altera)| FPGAs, comparison function is considerably slower than addition, subtraction and 
hard multiplication for equal input data widths. Therefore, to achieve maximum speed in FPGA, the 
comparison function in (8) and (9) is replaced with subtraction and checking the result for being 
greater than or equal to zero. 
    With respect to the very important fact that both Gy and Gx can be equal to zero, the comlete set of 
relations between the y- and x-gradients requires that the following conditions be fulfilled so that all 
the possible combinations within the interval [-255,255] could be correctly encompassed by the 
algorithm: 
                                           If  Gy = 0 & Gx ≠ 0                     GD =  0 . 
                                           If  Gy ≠ 0 & Gx = 0                     GD =  0 . 
                                           If  Gy = 0 & Gx = 0                     GD =  0 .                                                (6) 
 
     The computational mechanism of the algorithm is presented in the figure below: 
 
          Gx                   Gy                            Gx                      Gy                            Gx                  Gy     

 

  
 

Figure 2. Functional model of the proposed gradient direction algorithm 

4. Exploring the algorithm’s mathematical accuracy  

Gy > 0  &  Gx > 0 
Gy < 0  &  Gx < 0 

Gy> 0  & Gx< 0 
Gy< 0  & Gx> 0 

Result 

|Gx|*99 ≥ |Gy|*239 

 
45 

Gy = 0 & Gx ≠ 0       Gy ≠ 0 & Gx = 0 
Gy = 0 & Gx = 0 

90 

|Gx|*99 < |Gy|*239   & 
|Gx|*169 > |Gy|*70 

|Gx|*169 ≤ |Gy|*70 

 

Gx|*99 < |Gy|*239   & 
|Gx|*169 > |Gy|*70 

|Gx|*169≤ |Gy|*70 

|Gx|*99 ≥ |Gy|*239 0 

135 
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Testing mathematical accuracy of the proposed algorithm has to take into account both the values of 
the involved x- and y-gradients and the sign relations expressed in (2) and (3).   
Check  # 1 
               Gy = 50      Gx = 40 
               40*99     50*239                                                 (false) 
               40*99    <   50*239  &  40*169  > 50*70               (true) 
               40*169    50*80                                                   (false) . 

Therefore, GD  =  45 . Using the conventional method:   = 51.3401917°. 
Check  # 2 
               Gy = -48      Gx = 55 
               55*99     |-48|*239                                              (false) 
               55*99    <  |-48|*239   &  55*169 > |-48|*70         (true) 
               55*169   |-48|*70                                                (false).  
 

Therefore, GD = 135 . Using the conventional method :     =  - 41.1120904°.  
     The total mathematical accuracy of results is guaranteed for all integers within [-255,255]. The 
cases wherein dividend and divisor in (1) are equal to zero – 1021 in total, are to be considered 
separately according to (10). The whole bulk of calculated gradient direction values based on the 
positive and negative integers – 260100 in total, is quite equally distributed among the four intervals 
defining the four gradient directions. Each interval contains 65025 values resulting from the exact 

implementation of (1). Therefore, this proves that the two reference points –   and , 
representing the angles 22.5° and 67.5° are most appropriately selected. They are up to the goal of 
guaranteeing total mathematical accuracy. 

5. Exploring the algorithm’s speed capabilities in FPGA: results and analysis 
Assessing the proposed algorithm’s performance is based on the following methodology: 1) Select an 
FPGA device from each of the 10 targeted Intel (Altera) FPGA families using Quartus to conduct 
tests; 2) Write VHDL programs implementing the proposed algorithm and the approximation variants 
using the values within [-255,255]; 3) Analyze the algorithm’s speed on a comparative basis using 
ModelSim and TimeQuest Timing Analyzer. The achieved results are exhibited in the table below. 
 
Table 4. Capital speed parameters for the gradient direction calculation for the proposed algorithm 
and the available approximation variants. 

Values 
Capital speed parameters for the gradient direction calculation 

Maximum clock frequency (MHz) Total number of clock cycles required to secure result 

 
 

FPGA family 

Proposed 
algorithm 

Approx 
var. #1 

Approx 
var. #2 

Approx 
var. #3 

Approx 
var. #4 

Proposed 
algorithm 

Approx 
var. #1 

Approx. 
var. #2 

Approx 
var. #3 

Approx 
var. #4 

Cyclone 192 57 149 151 59 3 6 7 5 6 
Cyclone II 242 68 190 192 71 3 6 7 5 6 
Cyclone III 343 80 234 237 82 3 6 7 5 6 
Cyclone IV 359 84 228 232 84 3 6 7 5 6 
Cyclone V 367 88 231 235 88 3 6 7 5 6 
Stratix 286 71 234 239 75 3 6 7 5 6 
Stratix II 368 116 302 307 118 3 6 7 5 6 
Stratix III 484 142 426 433 147 3 6 7 5 6 
Stratix IV 522 162 442 453 167 3 6 7 5 6 
Stratix V 557 188 464 471 192 3 6 7 5 6 

 
     In Table 5 presented are the resources required by the proposed algorithm to be executed in Intel 
(Altera) Cyclone V E 5CEBA4F17C6N Device. The exibited data proves that the algorithm’s 
advanced computational mechanism guarantees its being very economical in utilizing the FPGA 
resources. 
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Table 5. Resources utilized by the proposed algorithm in Intel (Altera) Cyclone V E 
5CEBA4F17C6N Device. 

FPGA Resource Resource Counts Used Resource utilization 
Logic utilization (in ALMs )  18480 75 0.4058 % 
Total registers - 118 - 
Total block memory bits 3168512 0 0 % 
Total DSP blocks 66 2 3.0303 % 

 
     The analysis of the test results is as follows:          
1) Multiplication being the slowest integer arithmetic in the proposed algorithm, the optimal clock 
frequency of its execution is defined by the 9x9 hard multiplier’s performance. 
2) The optimal speed of the entire FPGA based Canny is determined by the optimal 18x18 hard 
multiplier’s performance, the range of magnitudes of Gaussian filters’ coefficients  having been taken 
into account. In the targeted Intel (Altera) FPGA families, the 9x9 hard multiplier is from 14.2% to 

16.4% faster than the 18x18 hard multiplier. Therefore, under all test conditions the proposed 
algorithm is capable of working accurately at a clock frequency higher than the maximum clock rate 
of the entire FPGA based Canny. This proves that it is optimal in the clock frequency domain. 
3) Approximation variants #1 and #4 use division. Therefore, their maximum clock frequencies are 
very low. Approximations #2 and #3 are considerably slowed down by the comparison function.  
4) In the proposed algorithm all multiplicaton and subtraction operations are performed 
simultaneously. Thus, its execution requires only 3 clock cycles at the highest clock frequency. 
     The two capital speed parameters having been assessed, the proposed algorithm is from 4.6 to 8.2 
times faster than the available approximation variants. Therefore, it is optimal in terms of speed.   

6. Conclusion 
Presented is an advanced gradient direction algorithm focused on optimal speed and total 
mathematical accuracy. The algorithm’s computational mechanism is set forth in detail. Its total 
mathematical accuracy is proved. Scrutinized are the algorithm’s speed capabilities in FPGA on a 
comparative basis. The test results for the two capital speed parameters prove that the proposed 
algorithm is the only computational technology which can work accurately at clock frequencies higher 
than the maximum clock frequencies the entire FPGA based Canny executes at in the targeted Intel 
(Altera) FPGA platforms. Therefore, the proposed algorithm is optimal in the speed domain. 
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