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Abstract. A data collection method is presented, by which identification of high order linear 
models is achieved. A closed loop experiment with a controller is performed. Frequency 
characteristics are used and parameters of the model, i.e. the critical operating mode values are 
obtained. The critical operating mode is realized by two state controller. A system of non-
linear equations is compiled, according to the parameters of the model by using the analytical 
expressions of the amplitude-frequency and phase-frequency characteristics. A method for 
solving the system is proposed. 

1.  Introduction 
The identification of the controllable objects is based on the search for analytical models. They are 
suitable for easily and repeatedly reproduction of experiments with the object. The results about the 
properties of the object obtained from the models are with reasonable accuracy. Analytical models can 
also be used for an experimental setup of the elements of the control device or for producing scaled 
(reduced or enlarged) physical models [1].  
Collecting informative data is a very important stage of the identification, by which an adequate 
analytical model of the physical processes can be evaluated. The proposed method for obtaining 
experimental data does not require specialized equipment. For this purpose, a classical linear or state 
controller is needed. The circuit of the experimental arrangement is the possible wiring diagram for 
constant operation between the control device and a controllable object, or the so-called circuit for 
operation in a closed loop [2, 3]. 

2.  Theoretical setup of the identification method 
The proposed identification method uses the analytical expressions for: amplitude frequency 
characteristics (AFC) and phase-frequency characteristics (PFC) for the alleged model and the 
experimental results for the critical frequency. The analytical expressions for AFC and PFC are known 
from the control theory (CT) [4] and contain the unknown parameters of the model. The experimental 
results for the amplitude and the phase are measured from the critical operation mode of the object in 
the closed loop. Eventually, the task becomes solving a system of non-linear equations, according to 
the unknown parameters. 
figure 1 shows, in general, the circuit of the closed loop with elements and indications of the signals. 
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Figure 1. General structure and indications in the closed loop 

 
It is indicated in the figure: 
CO – Controllable object; CD – Control device (controller); z(t).- Reference value (desired set point); 
u(t).- Control signal sent to the system; y(t) – The measured output of the system; y(t)-z(t) = ε(t) – 
error value. 
What is the critical operating mode of the object, and why it is used? The well-known Nyquist stability 
criterion for stability of linear systems presents best the critical mode. Amplitude-phase-frequency 
characteristics of the open structure (APFC) Woс (jω) for three values of the static coefficient of 
amplification Кр1< Кр2 < Кр3. are presented in figure 2. The coefficient is denoted as Кр1, because it can 
be considered as the coefficient of the controller. 
 

 
Figure 2. APFC characteristic of the open structure 

 
According to the Nyquist stability criterion, APFC for Кр1 represents a stable closed loop system, and 
with A3 and Ф3 are marked the corresponding stability margins. APFC for Кр2 represents a closed 
loop system, which is on its limit of stability, and this operating mode is known as critical operating 
mode. It is known by the theory, that the crossing of the negative part of the real axis of APFC is only 
possible in case of third and higher order open loop system without transportation lag. The critical 
operating mode is impossible for first and second order systems. 
The parameters of this mode are widely used: for setting the controllers in the loop; as asymptotic 
quality parameters, which keep performance unchanged; at the design stage and in particular to the 
identification of the systems.  
The critical operating mode is characterized by the following parameters: 
Critical frequency – ωкр, this is the frequency at which the module of the | Wос(jωкр) | = A(ωкр) =1 and 
the phase arg( Woс(jωкр)) = Ф(ωкр) = -π. 
The last of this also implies that the process (for Кр2 and ωкр) at the outcome y(t) will oscillate with 
constant amplitude and frequency, and will be in anti-phase with the input signal u(t). The last fact is 
used for simple experimental achieving of the critical operation mode, by soft settings variation of the 
controllers (linear and state). 

3.  A setting of the closed loop for critical operation mode 
The critical operating mode in the closed loop can be realized by two state (on/off) controller. 
In case of operation with classic two state controller, the critical operation mode is set as follows - 
figure 3: 
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Figure 3. Operation of a two state controller with a high order object 

 

A two state controller is set without non-unique function (hysteresis→0), 
 

                                                        зср yy                             (1) 

A setpoint is set z(t) = constant, by absolute value in the middle of the adjustment interval, 
corresponding to a set point in relative units z% = 50%, where: 
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The variables in the last formula are:                                    

 steady state value which is achieved by maximum control effect in figure 3 
 

                                                             maxmax uKy об                                             (3) 
 

 steady-state value which is achieved by minimum control effect in figure 3 
 

                                                             minmin uKy об                                             (4) 
 

 ycp– the average value of the steady-state oscillations – figure 3 
 
The following parameters are needed for the identification which is calculated with the experimental 
diagram of the critical process – figure 3: 

 critical frequency 

                                                                     кр
кр T




2
                            (5) 

 
 fluctuation range of the controllable (output) variable 

 

                                                  minmax yyy кр                            (6) 

 
 the average value of the control impact for rectangular pulses 

                                                                 

                                                                minmax uuu                                             (7) 
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 the variation range of the control impact 
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 the average value of the controllable variable 
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 the average value of the control impact 
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4.  An algorithm for the calculation method of the parameters of models 
Analytical TF, AFC and PFC of the models for order-n, which are defined by the method, are shown 
in table 1. 
 

Table 1. Models of APFC and PFC 

№ TF of the 
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The identification method can be depicted with the following algorithm: 

 preparation and realization of the experiment and construction of the process in Fig.3. Reading 
from the graph: umin, umax, ymin, ymax  and Ткр. Calculation of  uср, yср  by (9) and (10). 

 calculation of the static coefficient of the object by the formula: 
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 calculation of the critical frequency by the formula: 
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 calculation of the critical module by the formula: 
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 for the models 1 and 2 in Table 1., it is easy T and τ to be defined – first T from AFC and after 

that τ from PFC 
 for the models 3, the system is nonlinear according to T and n. The second equation can be 

simplified, i. e. 
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             in this form, it is suitable for nomograms. 
Methods for solving non-linear equations systems are known from theory. 

 it is cleared that the unknown n is number of first-order models without lags in the model and 
can accept equivalent and positive units only, which are greater than or equal to 3, i. e. (n ≥ 3) 

 the unknown T is mean as a time constant and thus it can accept positive values only, i. e, T≥0. 
The systems in table.1 (for the third kind of models) can be solved by building the graphics of the 
functions: n = f1(T), n = f2(T) and defining the coordinates of the intersection of the graphics. The co-
ordinate on the axis (n) is approximated to the nearest equivalent and positive unit. It is accepted as an 
order model. 
The right kind of  functions is: 
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5.  Validation of the method, results, and conclusions 
The presented method is validated in the computing environment of MATLAB. Numbers of closed 
loops are simulated with the controller. The controller control objects with different models, from the 
presented in table 1. In all cases, satisfactory results are reached (considering carefully the graphics). 
There are no doubts that the method is correct. 
For the approbation of the method, an example of fourth-order model is proposed with simulated data. 
The reader can verify the results, to convince himself in the merits of the method. The variant for 
achieving a critical operating mode is shown – by the circuit in figure 1. 
TF of the controllable object is: 
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And the desired set point is: 

                                                                   )(125)( ttz                          (18) 
The following quantities are reported from the graphic of the figure. 4: umin, umax, ymin, ymax  and Ткр..  
The quantities of uср, yср  are calculated by (9) and (10). 
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Figure. 4. A loop with two state controller, without hysteresis - umin = 0 and umax = 1 

 
It is calculated from the reported values in table 2: ωкр = 2π/Tкр; Kоб = yср/uср; Aкр = Δyкр/Δu 
 

Table 2. 
ωкр Kоб Aкр 
0.0977 50.00 12.5984 

 
The system of equations (15) and (16) is solved graphically by the obtained values in Table. 2. As a 
result, the graphics in Fig. 5 are obtained. 
 

 
Figure. 5. 

 
Based on the results which are obtained (the coordinates of the intersections), the following 
conclusions can be drawn: 
From the graphic, the results are: 

 T ≈ 10s and n ≈ 4, which is acceptable accuracy. The error is basically due to the graphical 
reading of yср. 

 the aforementioned algorithm is used for the identification of all the models in Table 1, and 
the results obtained are always with similar accuracy 

 the aforementioned algorithm could be used in a closed loop with a PID controller too. The 
main difference is in the calculation of uср, which may be achieved by the integration of u(t). 

References 
[1] Dragotinov I Technological Processes Automation  UFT 2003 
[2] Ljung L System Identification  Prentice Hall  1987 
[3] Ljung L System Identification Toolbox – User’s Guide The Math Works Inc 2016 
[4] Golnaraghi F and Kuo B Automatic Control Systems – John Wiley & Sons Inc 2010 
 


