
 
 
 
 
 
 

Speed focused FPGA based Canny computations: pipelining 

Dimitre Kromichev 

Department of Marketing and International Economic Relations, University of 
Plovdiv, 24 Tzar Asen Street, Plovdiv 4000, Bulgaria   

dkromichev@yahoo.com 

Abstract. Presented is a complete study of the functional model of pipelining in FPGA based 
Canny. Distinguished are high-, mid- and low level of pipelining. The speed capabilities of 
pipelining in Gaussian filtering, Sobel, gradient magnitude and direction, non-maximum 
suppression are explored at each level. Provided are the formulae for calculating the exact 
number of clock cycles required to execute these Canny modules with respect to the two input 
variables: image size and Gaussian filter size. Mathematically proved is the upper limit of 
FPGA based Canny speed in terms of pipelining. 

1. Introduction  
In FPGA based Canny, the two basic parameters of speed are: maximum clock frequency and 
minimum number of clock cycles required to calculate an accurate result at this clock frequency. The 
technique of choice to address the latter is pipelining. Its specifics depend on:   

 Two input variables: image size and Gaussian filter size 
 Execution of Sobel and non-maximum suppression computations require the simultaneous 

availability of all pixels pertaining to the square neighbourhood.  
      On that basis, pipelining in FPGA based Canny demands a multilevel approach.  
      In the literature, described are FPGA implementations of Canny which use pipelining to increase 
speed [4][9][10]. Pipelining is of particular importance for distributed Canny [1][2][3][8]. Although 
widely considered a tool of choice for boosting speed [5][6][7], none of the works available so far 
provide an in-depth analysis of the pipelining specifics in FPGA based Canny. Nor is there a reliable 
exploration of the impact of pipelining complexity on Canny’s execution with respect to Gaussian 
filter size and organization of computations in Gaussian smoothing module. 
    The objective of this paper is to thoroughly study FPGA based Canny pipelining by distinguishing  
high-, mid- and low level of pipelining functionality in Gaussian filtering, Sobel, gradient magnitude 
and direction, non-maximum suppression. The task is to analyze the efficiency of each level in the 
Canny modules with respect to proving the upper limit of speed in FPGA based Canny, as well as 
provide formulae for calculating the exact number of clock cycles required to execute these Canny 
modules by considering the impact of the two input variables: image size and Gaussian filter size. 
Relevant to the conclusions arrived at are only gray-scale images. The targeted hardware is Intel 
(Altera) FPGAs.  

2. High level pipelining 
It requires that for a definite number of clock cycles Gaussian filtering, Sobel, gradient magnitude and  
direction, and non-maximum suppression modules execute simultaneously. For an input image 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                               Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed



 
 
 
 
 
 

),( nmu  and Gaussian filter of size zxz , the number of clock cycles required by each module to 

process the entire image is: 
 Gaussian filtering 
 
         }*))1((*)](*))1([(1|{)( TzmSznzmxNxGaussnTclk             (1)                           

where    
)(GaussnTclk       is the clock cycles required to filter the image, 

S                             is the clock cycles between two consecutive filtered pixels,  
T                             is the clock cycles required to filter pixel #1.  
 

 Sobel filtering 
 
              }*))]1((*))1([(1|{)( EYznzmxNxSobelnTclk                         (2)               

where  
)(SobelnTclk        is the clock cycles required to filter an image with Sobel,  

Y                            is the clock cycles required to calculate an x-/y-gradient, 
E                            is the clock cycles required to execute division #1 in Sobel. 

 
 Gradient magnitude and direction 
 
  }*))]1((*))1([(1|{)()( QznzmxNxDirectnTclkMagnnTclk               (3)      

where  
)(MagnnTclk       is the clock cycles required for all gradient magnitudes, 

)(DirectnTclk      is the clock cycles required for all gradient directions, 

Q                            is the clock cycles required for a gradient magnitude/direction. 

 
 Non-maximum suppression 
 
           }*))]1((*))1([(1|{)( FHznzmxNxNMSnTclk                            (4) 

where  
)(NMSnTclk       is the clock cycles required for all non-maximum values,  

H                          is the clock cycles required by a single non-maximum value, 
F                          is the clock cycles required by non-maximum value #1. 
 
      Therefore, on the basis of (1), (2), (3) and (4) high-level pipelining (Figure 1) is expressed as: 
 

)}({)()()()()( PipeHighnTclkNMSnTclkDirectnTclkMagnnTclkSobelnTclkGaussnTclk   

                                                                                                                                                                (5)                                   
where  

)(PipeHighnTclk     is the clock cycles during which high level pipelining is realized. 

 
     Therefore, for particular image size and Gaussian filter size )(PipeHighnTclk  is a constant.  

     As Figure 1 shows, the start of high-level pipelining is characterized by a specific delay in each 
module after Gaussian: 

 Sobel    

       ))1#(()())1#((
1

prtoRAMwnTclkRAMpnTclkpGaussnTclkDsS
n

i
i  



            (6) 

where 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
2



 
 
 
 
 
 

 
Figure 1.  Graphical representation of high level pipelining  

 
DsS                                            is the start delay of high-level pipelining in Sobel,  

))1#(( pGaussnTclk                  is the clock cycles required to filter pixel #1with Gaussian, 

)( iRAMpnTclk                          is the clock cycles required to store a single Gaussian  

                                                    filtered pixel in Dual-port RAM, 

)(
1




n

i
iRAMpnTclk                    is the clock cycles required to store the necessary minimum of  

                                                    pixels in Dual-port RAM  
))1#(( prtoRAMwnTclk     is the clock cycles required by Dual-port RAM for operations  

                                                    write-read for Gaussian pixel #1. 
 

Gaussian filtering (filter zxz) 

Sobel filtering 

Gradient magnitude Gradient direction 

Dual-port RAM 
 

Non-maximum suppression 

Dual-port RAM 
 

Input image u(m,n) 

Constant number of clock 
cycles during which high 
level pipelining is realized 

                                                 

DsS 

  DsMD 

DsNMS DeS 

 DeMD 

   DeNMS 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
3



 
 
 
 
 
 

       In (6), )( iRAMpnTclk  depends entirely on the technology of computations in Gaussian filtering. 

In (6), 


n

i 1

denotes the exact number of Gaussian filtered pixels required to start Sobel and guarantee 

uninterrupted execution when one image row transitions into the next row. 
 Gradient magnitude and direction:  
 
                                                      )(SobelnTclkDsMD                                                            (7) 

where 
DsMD                  is the start delay of magnitude and direction, 

)(SobelnTclk       is the clock cycles required by Sobel. 

 
 Non-maximum suppression:   

  ))1#(()())1#(/(
1

prtoRAMwnTclkRAMpnTclkpDirectMagnnTclkDsNMS
n

i
i  



    (8)                       

where 
DsNMS                                      is the start delay of non-maximum suppression, 

))1#(/( pDirectMagnnTclk     is the clock cycles required to calculate magnitude and direction #1, 

)( iRAMpnTclk                          is the clock cycles required to store a single magnitude and direction  

                                                    in Dual-port RAM, 

)(
1

i

n

i

RAMpnTclk


                   is the clock cycles required to store the necessary minimum of  

                                                    pixels in Dual-port RAM,  
))1#(( prtoRAMwnTclk     is the number of clock cycles required by Dual-port RAM for  

                                                    operations write-read for magnitude and direction #1 .  
 

       In (8), )( iRAMpnTclk  depends entirely on the technology of computations in gradient magnitude 

and direction. In (8), 


n

i 1

denotes the exact number of magnitude values and direction values required 

to start non-maximum suppression and guarantee uninterrupted execution when one image row 
transitions into the next row. 
       According to (6), (7) and (8), DsS , DsMD  and DsNMS  are constants. 
       As Figure 1 shows, the end of high-level pipelining in each module after Gaussian is characterized 
by a specific delay which is equal to: 

 Sobel     
 

                                                             )1(*)1(  zzSzSDeS                                                   (9)                                      

where 
DeS          is end delay of high-level pipelining in Sobel, 

zS             is the side of Sobel filters, 
z               is the side of Gaussian filter. 
 

 Gradient magnitude and direction:  
 

                                                                           YDsMD                                                                (10) 
where 
DeMD       is end delay in gradient magnitude and direction. 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
4



 
 
 
 
 
 

 
 Non-maximum suppression:  
 

                                                          QzNMSDeNMS *)1(                                                        (11)                

where 
DeNMS        is end delay in non-maximum suppression, 

zNMS           is the side of non-maximum suppression square neighbourhood. 
       

     According to (9), (10) and (11), DeS , DeMD  and DeNMS  are constants. 
     Thus, on the basis of high level pipelining, the formula for calculating the number of clock cycles 
required to execute Gaussian filtering, Sobel, gradient magnitude and direction, and non-maximum 
suppression is: 
 

                DsNMSDeMDDsNMSDsMDDsSPipeHighnTclknTclk )(  

                                              DeNMSDeMDDeSGaussnTclk )(                                         (12) 

where 

nTclk   is the total number of clock cycles required for Gaussian filtering, Sobel,  

                     gradient magnitude and direction, non-maximum suppression.      
 
    High-level pipelining is realized for every image ),( nmu  in which  

 

                                                                   22 zSzm    

                                                                   22 zSzn                                                                       (13)  
where  
z         is the side of Gaussian filter, 
zS       is the side of Sobel filters. 

3. Mid-level pipelining  
This type is defined on the basis of computations in two consecutive Canny modules. It is represented 
by two sets of arithmetic operations which are executed simultaneously 
 
                                       }0,1,,|)({ tcamnZamNnamnaA   

                                  }1*40,1,,|)({  wdmnZdmNndmndD .                          (14)          

where             
tc                      is a constant determined by the organization of computations in Gaussian filtering, 

  ,     z  is the side of Gaussian filter and z = 3 . 
 
      Within the sets (14): 

 For 1am  and 1dm ,  the inputs of operations a(n+am) and d(n+dm) represent the outputs  

of operations ))1((  amna  and ))1((  dmnd  

 For 0am  and tcdm  , the input of operation )( amnd   is the output of operations  

)( dmna  . 

      Mid-level pipelining (Figure 2) is possible only if 
 

                                                     ))(())((
*4

1

1

1








w

i
ii

tc

i

ndnTclknanTclk                                             (15) 

where  

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
5



 
 
 
 
 
 

))(( inanTclk         is the clock cycles required to execute a single operation from set A, 

))(( indnTclk        is the clock cycles required to execute a single operation from set D. 

                  

 
Figure 2. Graphical representation of mid-level pipelining 

 
      As Figure 2 shows, the notation “ ” in inequality (15) represents the specifics of mid-level 
pipelining: 

 If 

                                             ))(())((
*4

1

1

1








w

i
i

tc

i
i ndnTclknanTclk                                               (16) 

 
there are no empty clock cycles between the end of arithmetic operation )*4( wnd  and the start of 

arithmetic operation )1(nd . Therefore, in his case the efficiency of pipelined computations is at its 

maximum. 

 If ))(())((
*4

1

1

1








w

i
i

tc

i
i ndnTclknanTclk , then ))(())((

*4

1

1

1








w

i
i

tc

i
i ndnTclknanTclkP    (17)                                            

where  
P         is the pause measured in empty clock cycles which occurs between the end of arithmetic  
            operation )*4( wnd  and the start of arithmetic operation )1(nd .  

 
     Therefore, in this case the efficiency of pipelined computations is decreased proportionally to P . 
     There is a special case to be considered:  
 
                                      }1,1,,|)({  dmnZdmNndmndD .                                         (18)                                 

 
In that case, the following inequality must be satisfied 
 

                                                  ))(())((
1

1

nanTclknanTclk
tc

i
i 





                                                      (19)                                               

where                   
))(( nanTclk      is the clock cycles required to execute the operation from set D. 

4. Low level pipelining  

 

Total number of 
clock cycles to 
execute operations 
in set D 

 

   

Equal Greater 

Canny  
module 1 

Canny  
module 2 

Maximum 
efficiency of mid-
level pipelining Efficiency of mid-level pipelining is decreasing 

Difference in clock cycles is increasing 

Total number of 
clock cycles to 
execute operations 
in set A 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
6



 
 
 
 
 
 

This type is defined on the basis of computations within a Canny module. It focuses on the 
simultaneous execution of consecutive arithmetic operations within a single clock cycle. There are 
four variants (Figure 3): 

 
Figure 3. Graphical representation of low level pipelining 

 
 Variant #1. It includes 2 identical consecutive arithmetic operations: 1aop , *1aop . The  

output of 1aop  is the input of *1aop . Hence, 

 
                                                       *11 TaopTàop  .                                                                   (20) 

where 
1Taop        is the propagation delay of 1aop , 

*1Taop     is the propagation delay of *1aop . 

 
     Therefore, in this case low level pipelining requires that  
 
                                                              *1TaopTclk                                                                        (21) 

where 
Tclk          is the period of the system clock. 
 
    In this case, the low level pipelining is 2 stage. 

 Variant #2. It includes 2 different consecutive arithmetic operations: 1aop , 2aop . The output  

of 1aop  is the input of 2aop . In this case, the following inequalities must be satisfied: 

     
                                                  If 21 TaopTaop   then 1TaopTclk                                               (22)                                                 

                                                  If 21 TaopTaop   then 2TaopTclk                                              (23) 

where 
2Taop     is the propagation delay of 2aop . 

 
       In this case, the low level pipelining is 2 stage. 

 Variant #3. It includes 3 different consecutive arithmetic operations: 1aop , 2aop , 3aop . 

The output of 1aop  is the input of 2aop . The output of 2aop  is the input of 3aop . In this case: 

 
                                          If 321 TaopTaopTaop   then 1TaopTclk                                        (24) 

aop1 aop1* 

 aop1 aop1* 

aop 1 aop2 -> aop3 

aop1  aop2 -> aop3 

aop1 aop2 

aop1 aop2 

aop1 aop2 aop3 

aop1 aop2 aop3 

aop1 aop2 aop3 

 Variant #1 

 Variant #2 

Variant #3 

Variant #4 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
7



 
 
 
 
 
 

where 
3Taop     is the propagation delay of 3aop  

 
       In this case, the low level pipelining is 2 stage. 

 Variant #4. It includes 3 different consecutive arithmetic operations:, 1aop , 2aop , 3aop .   

The output of 1aop  is the input of 2aop . The output of 2aop  is the input of 3aop . In this case: 

 
    If )31(&)21(&)31(1 TaopTaopTaopTaopTaopTaopTaop   then 1TaopTclk         (25) 

 
    In this case, the low level pipelining is 3 stage. 
    With all four variants, low level pipelining is possible only if every clock cycle a new value is fed to 
the combinational logic 1aop . 

5. Conclusion 
Thoroughly studied is the pipelining in FPGA based Canny modules: Gaussian filtering, Sobel, 
gradient magnitude and direction, and non-maximum suppression. Defined are high-, mid- and low 
level of pipelining. Each level is analyzed with respect to its speed capabilities in the respective Canny 
module. Provided are formulae for calculating the exact number of clock cycles required to execute 
the computations in these Canny modules with respect to the two input variables: image size and 
Gaussian filter size. Mathematically proved is the upper limit of FPGA based Canny speed in terms of 
pipelining. 

References 
[1]    Aravindh G., Manikandababu C. S. 2015 Algprithm and Implementation of Distributed  
         Canny Edge  Detector on FPGA ARPN Journal of  Engineering and Applied  Sciences Vol. 10   
         (7), pp.3208-3216 
[2]    Chandrashekar N.S., Nataraj K.R. 2017 A Review on FPGA Implementation of Distributed  
         Canny Edge Detector Proc. of Int. Conf. on Current Trends in Eng., Science and Technology, pp.  
         394-399 
[3]    Divya. D, Sushmap S. 2013 FPGA Implementation of a Distributed Canny Edge Detector   
         International Journal of Advanced Computational Engineering and Networking, Vol.1 (5)  
         pp.46-51 
[4]    Fangxin Peng,  Xiaofeng Lu,  Hengli Lu,  Sumin Shen 2012 An improved high-speed canny edge  
         detection algorithm and its implementation on FPGA Proceedings of SPIE, Pattern Recognition  
         and Basic Technologies Conference Vol. 8350 
[5]    Pallavi Ramgundewar,  Hingway S .P., Mankar K. 2015 Design of modified Canny Edge  
         Detector based on FPGA for Portable Device Journal of The International Association of  
         Advanced Technology and Science Vol. 16 (2), pp. 10-16 
[6]    Poonam S. Deokar and Anagha P. Khedkar 2015 Implementation of Modified Distributed Canny  
         Edge Detector Algorithm Using FPGA International Journal of Information Research and  
         Review Vol. 2 (8), pp. 999-1003 
[7]    Shraddha Y. Swami, Jayashree S. Awati 2017 Implementation of Edge Detection Filter using  
         FPGA Proceedings of 49th IRF International Conference, pp. 26-30  
[8]    Thombare Ashwini, S. B. Bagal 2015 A Distributed Canny Edge Detector with Threshold  
         Segmentation  International Journal of Modern Trends in Engineering and Research, pp.  
         1567-1572 
[9]    Supraya K, 2017 Hardware Implementation Of Canny Edge Detection Algorithm With FPGA  
         Journal of Engineering Science and Technology Vol. 12, No. 9, pp. 2536-2550 
[10]  Yu Chen, Caixia Deng, Xiaxia Chen 2015 An Improved Canny Edge Detection Algorithm  
         International Journal of Hybrid Information Technology Vol.8 (10), pp. 359-370 
 

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria                              Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
8


