

Parallelism in speed focused FPGA based Canny
computations

Dimitre Kromichev

Department of Marketing and International Economic Relations, University of
Plovdiv, 24 Tzar Asen Street, Plovdiv 4000, Bulgaria

dkromichev@yahoo.com

Abstract. Explored is the complete functional model of parallelism in FPGA based Canny
computations. Distinguished are top-, high-, mid- and low level of parallelism. The specific
use of each level in tthe different parts of Canny’s contour detection algorithm is thoroughly
investigated. Studied is the impact of all levels of parallelism on speed on the basis of
particular formulae. The mathematics and speed capabilities of a specific type of FPGA based
multiplication is analyzed in the context of parallelism.

1. Introduction
Parallel execution of calculations is a typical capability of programmable logic. This is most
advantageous to FPGA based Canny focused on speed. In view of the computational complexity of
Canny’s algorithm, parallelism requires an in-depth analysis and multilevel exploration.
 In the literature, parallelism is used in distributed Canny [1][4][5][6][7]. There are some
approaches which use parallelism oriented techniques in Gaussian and Sobel filtering [2][3]. So far
there is no in-depth study of all the multifaceted characteristics of parallelism in FPGA based Canny.
Nor is there a reliable exploration of the impact of parallelism on performance.
 The objective is to present a complete study of parallelism in FPGA based Canny. The task is to
analyze all applications of parallelism with respect to speed capabilities and organization of
computations in Canny modules. Relevant to the conclusions arrived at are only gray-scale images.
The targeted hardware is Intel (Altera) FPGAs. The hardware description language is VHDL.
 In VHDL, computational parallelism is based on execution of processes. There are two types of
processes: implied and explicit. Implied processes are represented by the concurrent signal
assignments which execute at the same time in parallel. When a concurrent signal assignment is
realized it automatically implies a process. If there are many signal assignments then all of these signal
assignments are operating in parallel and must be treated as so by the synthesis tool and the simulation
tool. The explicit process contents consist of sequential statements and simple signal assignments.
Inside an explicit process all statements are executed sequentially. All implied processes and explicit
processes in general execute in parallel. Thus, the functionality of parallelism in FPGA based Canny
relies on the collection of processes used to execute the indispensable Canny mathematics.

2. Top level parallelism
This parallelism is based on Canny’s typology. It is characteristic of Sobel filtering. In it, two identical
sets of sequentially ordered arithmetic operations are executed simultaneously

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed

)}()(Im)),..,(()(Im)),(()({Im naopAipAmnnaopAipAmnnaopAipAA

)}()(Im)),..,(()(Im)),(()({Im naopDipDmnnaopDipDmnnaopDipDD

 A ≡ D ,
 },2,1{i

 Nn ,

 }1,..,2,1{ nm . (1)

where
)(Im ipA is the number of parallel implementations of an arithmetic

 operation within a clock cycle in set A ,
)(Im ipD is the number of parallel implementations of an arithmetic

 operation within a clock cycle in set D ,
))()),..,(((nmnnaopA is a particular arithmetic operation from set A ,

))()),..,(((nmnnaopD is a particular arithmetic operation from set D .

 Parallelism defined by (1) requires that

)()),..,(()),((nTaopAmnnTaopAmnnTaopATclk

)()),..,(()),((nTaopDmnnTaopDmnnTaopDTclk (2)

where
Tclk is the period of the system clock,

)()),..,((nTaopAmnnTaopA is the propagation delay of every arithmetic operation in set A ,

)()),..,((nTaopDmnnTaopD is the propagation delay of every arithmetic operation in set D ,

 If
 &))(()1((TclkmnnTaopAmnnTaopA

 TclkmnnTaopDmnnTaopD))(())1((

then

 nAnTclk)(

 nDnTclk)((3)

where

)(AnTclk is the number of clock cycles required to execute all arithmetic operations in set A ,

)(DnTclk is the number of clock cycles required to execute all arithmetic operations in set D .

 If

 &))(())1((TclkmnnTaopAmnnTaopA

 TclkmnnTaopDmnnTaopD))(())1((

then

 1)(nAnTclk

 1)(nDnTclk (4)

where
)(AnTclk is the number of clock cycles required to execute all arithmetic operations in set A ,

)(DnTclk is the number of clock cycles required to execute all arithmetic operations in set D .

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
2

 Expressions (4) represent the possible minimum number of clock cycles required to execute
operations in A and D .
 The FPGA based functional model of Sobel filtering implementing top level parallelism is
presented in Figure 1 of Appendix. All arithmetic operations used to calculate the x-gradient and the y-
gradient are exactly the same and are executed simultaneously.

3. High level parallelism
This parallelism is based on Canny’s structure. It is characteristic of gradient magnitude and direction
computations. In it, two different sets of sequentially ordered arithmetic operations are executed
simultaneously.

)}()(Im)),..,(()(Im),(()({Im nAaopAiApAmAnAnAaopAiApAmAnAnAaopAiApAA

)),..(()(Im)),)()({Im mDnDnDaopDiDpDmDnDnDaopDiDpDD

)}()(Im.., nDaopDiDpD

A ≠ D ,

iA 42 ,
32 22 iD ,

nDnANnDNnA ,, ,

}1,..,2,1{ nAmA ,

}1,..,2,1{ nDmD , (5)

where
)(Im iApA is the number of parallel implementations of an

 arithmetic operation within a clock cycle in set A ,
)(Im iDpD is the number of parallel implementations of an

 arithmetic operation within a clock cycle in set D ,
))()),..,(((nAmAnAnAaopA is a particular arithmetic operation from set A ,

))()),..,(((nDmDnDnDaopD is a particular arithmetic operation from set D .

 Parallelism defined by (5) requires that

)(),..,(()),((nATaopAmAnAnATaopAmAnAnATaopATclk

)()),..,(()),((nDTaopDmDnDnDTaopDmDnDnDTaopDTclk (6)

where
)()),..,((nATaopAmAnAnATaopA is the propagation delay of every arithmetic

 operation in set A ,
)()),..,((nDTaopDmDnDnDTaopD is the propagation delay of every arithmetic

 operation in set D .

 Because in (6) nDnA , it follows that

 If TclkmAnAnATaopAmAnAnATaopA))(())1((then 1)(nAAnTclk (7)

where
)(AnTclk is the number of clock cycles required to execute all arithmetic operations in set A .

 Expression (7) represents the possible minimum number of clock cycles required to execute
operations in both A and D .

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
3

 The FPGA based functional model of gradient magnitude is presemted in Figure 3(a) of Appendix.
The FPGA based functional model of gradient direction is presented in Figure 3(b) of Appendix. In
FPGA based Canny execution, gradient magnitude submodule and gradient direction submodule use
the same inputs (the x- and y-gradients) and work simultaneously, thus implementing high level
parallelism.

4. Mid-level parallelism
This parallelism is based on the organization of computations in a particular Canny module. It is
characteristic of Gaussian filtering. In it, two or more sets of pipelined arithmetic operations are
executed simultaneously.

)}(1)(1Im)),..,((1)(1Im)),((1)(1{Im1 naopAipAmnnaopAipAmnnaopAipAA

)}(2)(2Im)),..,((2)(2Im)),((2)(2{Im2 naopAipAmnnaopAipAmnnaopAipAA

)}()(Im)),..,(()(Im)),(()({Im naopAFipAFmnnaopANipAFmnnaopANipAFAF

1A ≡ 2A ≡ ,.., ≡ AN

1i

Nn

}1,..,2,1{ nm (8)

where
))(,..,2,1(Im iAFAAp is the number of implementations of an arithmetic

 operation within a single clock cycle in each of the
 sets A1, A2, .., AF,

))()),..,()((,..,2,1(nmnnAFAAaop is a particular arithmetic operation from set A1, A2, .., AF.

 This level of parallelism requires that:

 All arithmetic operations in set A1, A2, .., AF are binary
 One of the operands of arithmetic operation # (n-(n-m)) is the same for all sets AFAA ,..,2,1 .

 Parallelism defined by (8) requires that

)),..()(,..,2,1()),()(,..,2,1(mnnAFAATaopmnnAFAATaopTclk

)(,..,2,1(.., nAFAATaop (9)

where
))()(,..,2,1(mnnAFAATaop is the propagation delay of every arithmetic operation in sets

 AFAA ,..,2,1 .

 This parallelism has two variants:

 Variant #1. If

 TclkmnnAFAATaopmnnAFAATaop)()(,..,2,1())1()(,..,2,1((10)

then arithmetic operations in sets AFAA ,..,2,1 are pipelined in 3 stages

 Variant #2. If

 TclkmnnAFAATaopmnnAFAATaop))()(,..,2,1())1()(,..,2,1((11)

then arithmetic operations in sets AFAA ,..,2,1 are pipelined in 2 stages.

 Therefore, this variant is preferred in speed focused computations..

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
4

 The minimum number of clock cycles required to execute in parallel the pipelined operations in
AFAA ,..,2,1 depends on one of the input variables to Canny: the size of Gaussian filter.

 The FPGA based functional model of Gaussian filtering implementing mid-level parallelism is
presented in Figure 2 of Appendix. The size of Gaussian filter used in the model is 5x5. Mid-level
parallelism is the basis for the fatest technology of Gaussian filtering in terms of minimum number of
clock cycles required to process an input image pixel. Mid-level parallelism guarantees that for a
Gaussian filter of size zxz the number of input image pixels which are processed simultaneously is
equal to z .

5. Low level parallelism
This parallelism is based on the functional mechanism of a particular computational algorithm. It is
characteristic of square root and multiplication. It consists of a set of two consecutive arithmetic
operations

 }2)(Im,1)({Im aopipAaopipAA

 42i (12)
where

)(Im ipA is the number of parallel implementations of an arithmetic operation within a

 single clock cycle,
1aop is arithmetic operation #1,

2aop is arithmetic operation #2.

 In each pair 2,1 aopaop the output of 1aop is the input of a comparison operation in 2aop . The

output of an operation #2 cannot be the input of any other operation #1. Therefore, none of the i
implementations of pairs 2,1 aopaop can be executed sequentially.

 This parallelism has two variants:

 If TclkTaopTaop 21 then 2nTclk (13)

where
1Taop is the propagation delay of operation #1,

2Taop is the propagation delay of operation #2,

nTclk is the number of clock cycles required to execute the computational algorithm.

 If TclkTaopTaop 21 then 1nTclk . (14)

 Integer square root algorithm is part of gradient magnitude computations. Its FPGA based
functional model implementing low level parallelism is presented in Figure 4 of Appendix.
 Integer arithmetic addition has a specific relation to low level parallelism when the number of
addends is more than two. Executing addition by using a multistaged two-input adder structure
impacts Tclk according to the expression:

 PL if pN 2

 1 PL if 122 PP N (15)
where
 L is the number of consecutive levels of adders ,
N is the number of addends,

NP .

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
5

 From (15) it follows that if for N = 2 the period of the system clock is Tclk, then for N > 2 the
period of the system clock becomes L*Tclk.. Therefore, in that case the use of registers between the
levels of adders is a must.
 Expressions (15) are used to assess the applicability of a multiplication technique based on the fact
that for any NMr one of the following expressions holds true

 snmkMr 2..222 (16)
where

Nsnmk ,..,,, and 1.. snmk ;

 02..2222 snmkMr (17)
where

Nsnmk ,..,,, and 1.. snmk .

 Because maximum image pixel value is 128 , the product P of multiplicand 128 Md and
multiplier Mr is one of the following:

 according to (16)

)112(..)12()12()12()12(88888 snmkP (18)

 according to (17)

)12(..)12()12()12()12(88888 snmkP . (19)

 Because the two addends must have equal number of bits and maximum image pixel value is

128 , according to (15) the largest output data width of an adder at level #1 is m32 . Hence,

 for expression (18) nShlL

 for expression (19) 1 nShlL (20)
where
nShl is the number of shift left operations.

 Therefore, maximum clock frequency of this multiplication technique is defined on the basis of the
inequality

)2()(3 mTaddmTTclk (21)

where
)(mT is the propagation delay of shift left operation executed by m number of bits,

)2(3 mTadd is the propagation delay of the adder with input data widths equal to m32 bits.

 The FPGA based functional model of a multiplier implementing low level parallelism is presented
in Figure 5 of Appendix.

6. Conclusion
Presented is an in-depth study of parallelism in FPGA based Canny. Defined are top-, high-, mid- and
low level of parallelism. The specific use of each level in the different parts of Canny’s algorithm is
thoroughly investigated. Analyzed is the impact of all levels of parallelism on speed on the basis of
particular formulae. The mathematics and speed capabilities of a specific type of FPGA based
multiplication is explored in the context of parallelism.

Appendix

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
6

Figure 1. Functional model of Sobel filtering Figure 2. Functional model of Gaussian filtering
 implementing top level parallelism implementing mid-level parallelism

(a) (b)

Figure 3. Functional model of gradient magnitude – (a), and functional model of gradient
 direction - (b). Working simultaneously, they implement high level parallelism

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
7

Figure 4. Functional model of integer square root Figure 5. Functional model of multiplier
 algorithm implementing low level implementing low level parallelism
 parallelism

References
[1] Aravindh G., Manikandababu C. S. 2015 Algprithm and Implementation of Distributed
 Canny Edge Detector on FPGA ARPN Journal of Engineering and Applied Sciences Vol. 10
 (7), pp.3208-3216
[2] Chandrashekar N.S., Nataraj K.R. 2013 Image Smoothening Gradient Magnitude and Hystersis
 Calculation for Canny Edge Detector Using FPGA for Area Optimization IOSR Journal of VLSI
 and Signal Processing (IOSR-JVSP) Vol. 2 (2), pp. 5-9
[3] Supraya K. 2017 Hardware Implementation Of Canny Edge Detection Algorithm With FPGA
 Journal of Engineering Science and Technology Vol. 12, No. 9, pp. 2536-2550
[4] Pallavi Ramgundewar, Hingway S .P., Mankar K. 2015 Design of modified Canny Edge Detector
 based on FPGA for Portable Device Journal of The International Association of Advanced
 Technology and Science Vol. 16 (2), pp. 10-16
[5] Poonam S. Deokar and Anagha P. Khedkar 2015 Implementation of Modified Distributed Canny
 Edge Detector Algorithm Using FPGA International Journal of Information Research and Review
 Vol. 2 (8), pp. 999-1003
[6] Veeranagoudapatil, Chitra Prabhu 2015 Distributed Canny Edge Detector:Algorithm & FPGA
 Implementation, International Journal for Research in Applied Science & Engineering
 Technology Vol. 3 (5), pp. 586-588
[7] Yu Chen, Caixia Deng, Xiaxia Chen 2015 An Improved Canny Edge Detection Algorithm,
 International Journal of Hybrid Information Technology, Vol.8 (10), pp.359-370

Sevil Ahmed
Copyright © 2020 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

Sevil Ahmed

Sevil Ahmed
8

