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Abstract. The paper presents an optimal speed algorithm for accurately calculating high and 
low thresholds. It is to be used in FPGA based Canny targeting maximum performance. 
Scrutinized is the proposed algorithm’s computational mechanism. Its functionality is set forth 
in detail. Proved is the algorithm’s practicality in terms of guaranteeing the calculation of the 
most appropriate threshold values in a dynamic fashion. On a comparative basis, explored amd 
analyzed are the proposed algorithm’s capabilities to ensure reliable results at optimal speed 
under all test conditions.  

1. Introduction 
Speed has two capital parameters: the highest clock frequency of execution and the minimum number 
of clock cycles needed to secure an exact result at the highest clock rate. Selecting the appropriate high 
and low thresholds is crucial to the detected contours’ precision.  

The objective of this paper is to propose an optimal speed algorithm for calculating high and low 
thresholds to be used in FPGA based Canny targeting maximum performance on the platform of total 
mathematical accuracy. The task is to scrutinize the presented algorithm in terms of its computational 
mechanism and explore its performance with respect to the two capital speed parameters. Relevant to 
the conducted experiments and conclusions arrived at are only gray-scale images. The software tool 
utilized to to ascertain the total number of high and low threshold selection options is Scilab. The 
targeted hardware is Intel (Altera) FPGAs. The following ten Intel (Altera) FPGA families are used in 
the tests: 130 nm, 90 nm, 65 nm, 40 nm, 28nm, Cyclone, Cyclone II, III, IV, V; 130 nm, 90 nm, 65 
nm, 40 nm and 28nm Stratix, Stratix II, III, IV, V. Intel (Altera) Quartus, ModelSim and TimeQuest 
Timing Analyzer are utilized for exploring the feasibility and practicality of the proposed algorithm.  
 
2. Survey of the available approaches  
     In distributed Canny on Xilinx Virtex 4 and 5 [1[[2][6][7][10], the thresholds’ calculation is 
modified to enable parallel processing. A 64-bin uniform discrete histogram is used for the high 
threshold calculation. This entails performing 64 multiplications and comparisons. All simulations are 
for 512x512 images and are performed at a maximum clock rate of 100 MHz. It is pointed out [3][4] 
that Canny is hard to work in real time due to its computational complexity. The proposed 
implementation uses block classification for adaptive thresholding. Direct implementation of Canny 
algorithm is too slow to be employed in real-time applications [8][9][12]. To enable parallel 
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processing the input image is divided into m×m overlapping blocks. Uniformly quantized gradient 
magnitude histograms are computed on overlapped blocks. A threshold selection algorithm based on 
the distribution of pixel gradients in a block of pixels is used. The high threshold is computed on the 
basis of the histogram. The lower threshold is 40% of the higher threshold. Setting the thresholds by 
experience requires repeated tests to find the appropriate value [11]. It is underlined that needed is an 
adaptive method to automatically select the most appropriate thresholds by combining the image 
characteristics [5].  
     With respect to the two capital speed parameters, none of the aforesaid approaches are up to 
accomplishing the goal of achieving maximum performance in FPGA based Canny. 
 
3. The proposed algorithm for calculating high and low thresholds  
The task to start with is: define a staple set of minimum steps between two successive high threshold 
values and select sets of ratios between high and low thresholds, and on that basis, ascertain the 
possible number of thresholds with respect by steps and ratios. The achieved results are: 
 
Table 1. Total number of high and low threshold selection options. 

Values 
Minimum step between two successive high threshold values 

5 7 10 
Ratios b/n high and low threshols Ratios b/n high and low threshols Ratios b/n high and low  threshols 

 
 

Parameters 

2, 2.2, 2.5, 2.8, 3 2, 2.5, 3 2, 2.2, 2.5, 2.8, 3 2, 2.5, 3 2, 2.2, 2.5, 2.8, 3 2, 2.5, 3 
High  thresholds 50 50 36 36 25 25 
High  threshold range [5,250] [5,250] [7,252] [7,252] [10,250] [10,250] 
Pairs of thresholds 250 150 180 108 125 75 

 
     The goal of the proposed algorithm is to provide optimally fast computing of the high and low 
threshold values by satisfying the following computational requirements: 1) Compute the thresholds in 
a dynamic fashion - simultaneously with the non-maximum suppression, to boost pipelining; 2)  Total 
mathematical accuracy; 3)  Utilize only the fastest FPGA arithmetic; 4) Avoid iterative calculations. 
     The algorithm encompasses the following sequence of steps: 
1) Define the range of positive integers the high threshold calculation will be based upon. It represents 
a closed interval whose minimum and maximum values Nmin and Nmax are selected such that the 
result of [(Nmax+1) – Nmin] is equal to a number whose factor is 7, and (Nmax+Nmin) < .   
2) The interval from step 1) is divided into equal subintervals whose minimum and maximum values 
SUB_Nmin and SUB_Nmax are related by the equation: [(SUB_Nmax+1) – SUN_Nmin] = 7. Each 
subinterval is associated with one reference value which is equal to the fourth out of the seven 
consecutive values contained in this subinterval. 
3) Define a set of table values – they are positive integers calculated by dividing all the values in the 
interval [5, 250] by each of these five values {2, 2.2, 2.5, 2.8, 3} prior to starting executing the 
algorithm. 
4) Define a set of counters. Each counter is associated with one of the subintervals from step 2). 
5) Starting with non-maximum suppressed image pixel #1, each pixel is assessed with respect to its 
value falling or not falling within one of the subintervals from step 2). If the pixel value is within an 
interval, the counter associated with this particular interval is incremented. 
6) With all the pixels having been subjected to the assessment procedure from step 5), the values in 
each of the counters defined in step 4) are compared to select the two largest among them. On the 
basis of these largest values, one of the subintervals and the reference value associated with it is 
compared with the other of the two largest intervals and its reference value.  
7) Calculate the difference between the two reference values for the purpose of further defining a new 
interval. The number of pixels in this new interval is equal to the difference between the two reference 
values. In the interval thus defined, the leftmost value is equal to the larger of the two selected 
reference values in step 6). The rightmost value is equal to the smaller of the two selected reference 
values in step 6).  
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8) Explore the values within the new interval defined in step 7) to ascertain the smallest among them. 
This value is the high threshold.  
9) The high threshold is associated with a set to five table values calculated in advance by using 
divisors {2, 2.2, 2.5, 2.8, 3} as described in step 3).  
10) Select the appropriate table value from step 3). This is the low threshold. 
     The compitational mechanism of the algorithm is presented in Figure 1.  
 

 
 

Figure 1. Functional model of the algorithm for calculating high and low thresholds 

 
4. Exploring the algorithm’s mathematical accuracy 
The table values are calculated by using the values within the interval [5, 250] as dividends, and the 
divisors are each of {2, 2.2, 2.5, 2.8, 3}. They are computed in advance for the purpose of avoiding 
delays in the very essential process of calculating the thresholds. The table values are integers stored 
prior to starting Canny’s execution, thus no mathematical operation is required to be used. In view of 
the fact that there are five divisors, there is an option to switch between the different tables containing 
results obtained by utilizing different divisors. This renders the selection of the low threshold more 
adaptive and flexible, depending on the particular input image statistics. The aim is to ensure an 
optimal range of options without resorting to additional integer arithmatic calculations. 
 
5. Exploring the algorithm’s speed capabilities in FPGA 
To evaluate the proposed algorithm’s performance, employed is the following methodology: 1) Select 
ten real life images of equal size and execute Canny using Scilab Image and Video Processing 
Toolbox, Scilab Image processing Design Toolbox; 2) Store the ten image matrices obtained after 
executing the non-maximum suppresssion module into separate files using Scilab; 3) Define ROM 
using Quartus; 4) Open a Memory initialization file (.mif) in Quartus; 5) Store each non-maximum 
suppressed image matrix into a .mif file; 6) Write  VHDL programs to implement the algorithms being 
compared; 7) Comparatively evaluate the proposed algorirthm’s performance using non-uniform 
quantizing and in-class variance algorithms in terms of the two capital speed paremeters - the highest 
clock frequency and the minimum number of clock cycles needed to secure an exact result at the 
highest clock rate, by conducting performance tests on the ten non-maximum suppressed image 
matrices.  

[Nmin, Nmin+6] [Nmin+7, Nmin+(2*7-1)] [Nmin+2*7, Nmin+(3*7-1)] ..    .. [Nmin + Nmax-7, Nmax] 
 

Low threshold 

 
Define the new interval on the basis of the 
two largest reference values and select the 

smallest value contained 

  

C1 C2 C3 C4 ....    …. C [(Nmax-1) - Nmin]/7] 

 

Intervals associated with reference values 

 

 Divisors  {2, 2.2, 2.5, 2.8, 3} 

High threshold 

 

Select the two largest reference values with 
respect to the contents of the counters 
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     The achieved results are exhibited in the tables below.   
 
Table 2. Capital speed parameters for the high and low threshold calculation using the proposed  
algorithm. 

Values 
Capital speed parameters for the high and low threshold calculation using the proposed algorithm 

Total number of clock cycles taken to secure mathematically accurate result 
Non-maximum suppressed image matrices 

 
 

FPGA 
family 

Maximum 
clock frequency 

(MHz) 1 2 3 4 5 6 7 8 9 10 
Cyclone 196 68 75 80 73 81 67 88 76 82 89 
Cyclone II 246 68 75 80 73 81 67 88 76 82 89 
Cyclone III 349 68 75 80 73 81 67 88 76 82 89 
Cyclone IV 367 68 75 80 73 81 67 88 76 82 89 
Cyclone V 385 68 75 80 73 81 67 88 76 82 89 
Stratix 291 68 75 80 73 81 67 88 76 82 89 
Stratix II 385 68 75 80 73 81 67 88 76 82 89 
Stratix III 502 68 75 80 73 81 67 88 76 82 89 
Stratix IV 548 68 75 80 73 81 67 88 76 82 89 
Stratix V 586 68 75 80 73 81 67 88 76 82 89 

 
 
Table 3. Capital speed parameters for the high and low threshold calculation using the non-uniform 
quantizing algorithm. 

Values 
Capital speed parameters for the high and low threshold calculation using the non-uniform quantizing algorithm 

Total number of clock cycles taken to secure mathematically accurate result 
Non-maximum suppressed image matrices 

 
 

FPGA 
family 

Maximum clock 
frequency 

(MHz) 1 2 3 4 5 6 7 8 9 10 
Cyclone 149 885 946 962 935 892 928 912 964 899 908 
Cyclone II 192 885 946 962 935 892 928 912 964 899 908 
Cyclone III 228 885 946 962 935 892 928 912 964 899 908 
Cyclone IV 231 885 946 962 935 892 928 912 964 899 908 
Cyclone V 234 885 946 962 935 892 928 912 964 899 908 
Stratix 226 885 946 962 935 892 928 912 964 899 908 
Stratix II 302 885 946 962 935 892 928 912 964 899 908 
Stratix III 426 885 946 962 935 892 928 912 964 899 908 
Stratix IV 442 885 946 962 935 892 928 912 964 899 908 
Stratix V 464 885 946 962 935 892 928 912 964 899 908 

 
 
Table 4. Capital speed parameters for the high and low threshold calculation using the in-class 
variance algorithm. 

Values 
Capital speed parameters for the high and low threshold calculation using the in-class variance algorithm 

Total number of clock cycles taken to secure mathematically accurate result 
Non-maximum suppressed image matrices 

 
 

FPGA 
family 

Maximum clock 
frequency 

(MHz) 1 2 3 4 5 6 7 8 9 10 
Cyclone 149 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Cyclone II 192 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Cyclone III 228 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Cyclone IV 231 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Cyclone V 234 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Stratix 226 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Stratix II 302 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Stratix III 426 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Stratix IV 442 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 
Stratix V 464 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918 

 
       Table 5 presents the resources utilized by the proposed algorithm in Intel (Altera) Cyclone V E 
5CEBA4F17C6N Device. The exibited data proves that the algorithm’s advanced computational 
mechanism ensures its being quite economical in utilizing the FPGA resources. This is mainly due to 
the optimized number of essential arithmetic operations and the technology of handling the entire 
image statistics. 
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Table 5. Resources utilized by the proposed algorithm in Intel (Altera) Cyclone V E 
5CEBA4F17C6N Device. 

FPGA Resource Resource Counts Used Resource utilization 
Logic utilization (in ALMs )  18480 228 1.2337 % 
Total registers - 80 - 
Total block memory bits 3168512 0 0 % 
Total DSP blocks 66 0 0 % 

 
6. Analysis of results  
The data in Table 2 shows that the proposed algorithm is capable of executing at optimal clock 
frequency in each of the targeted FPGA platforms. This is due to the fact that all comparison functions 
are replaced with subtraction and checking the result for being larger or equal to zero. 
     The proposed algorithm demonstrates two substantial advantages: 1) It calculates the exact high 
threshold value on the basis of using intervals at two levels; 2) All the clock cycles required for 
calculating the leftmost and the rightmost values of the lower level interval are equal to the number of 
counters + 1. The lower level interval having been defined, its values are compared on the basis of the 
same subtraction procedure as the higher level intervals. The number of values to be compared here 
varies and depends on the difference between the leftmost and the rightmost values. It is this fact that 
determines the difference between the number of clock cycles required to calculate the two thresholds 
for the tested ten non-maximum suppressed image matrices (Table 2). 
     The proposed algorithm selects the low threshold value directly from a table of values computed in 
advance. Thus, the high threshold having been calculated, there is no need of any further arithmetic 
operations to obtain the low threshold. Therefore, in terms of clock cycles required to compute the two 
thresholds, the proposed algorithm is most favourable to optimal pipelining efficiency.  
     Both the non-uniform quantizing and in-class variance algorithms rely on comparison function to 
determine the largest or the smallest values. Hence, their execution frequencies are lower. In terms of 
clock rate, another very unfavourable aspect is that they use division to calculate the low threshold. 
The maximum clock frequencies exhibited in Tables 3 and 4 represent non-uniform quantizing and in-
class variance implementations in which division is replaced with calculating the low thresholds by 
using precomputed reference table values. In this way, the comparison between the proposed 
algorithm and the non-uniform quantizing and in-class variance algorithms is drawn on equal terms. If 
conventional division had been used instead, the naximum frequencies of the non-uniform quantizing 
and in-class variance algorithms would have been from 5.2 to 6.4 times as low. Their computational 
mechanisms being entirely based on iterations, the total number of clock cycles taken to calculate the 
two thresholds is from 12.7 to 32.5 times larger than the number of clock cycles required by the 
proposed algorithm (Tables 2, 3 and 4). 
     For the tests, it is assumed that all the algorithms start the computation of the high threshold under 
the same conditions – the data regarding the non-maximum suppressed image statistics has already 
been obtained in compliance with each of the targeted algorithms’ specifics. And here is the crucial 
difference between the proposed algorithm and the other two approaches. The proposed algorithm 
acquires the necessary information on the image statistics dynamically – simultaneously with the non-
maximum suppression execution. Therefore, as soon as all pixels have been processed in the non-
maximum suppression module, the calculation of the high threshold can start without any delay. The 
non-uniform quantizing and in-class variance algorithms acquire the necessary information in 
sequential fashion – after the non-maximum suppression computations have finished. Therefore, 
delays equal to the number of clock cycles taken to perform operations on the entire non-maximum 
suppression image matrix must be added to the clock cycles exhibited in Table 3. This results in 
blocking the pipelining for additional number of clock cycles proportional to the image size.  
     Considering both capital speed parameters, the proposed algorithm is from 19.9 to 48.7 times faster 
than the non-uniform quantizing and in-class variance. It is optimal in the speed domain. 
 
7. Conclusion 
Proposed is an optimal speed algorithm for calculating high and low thresholds in FPGA based Canny. 
The algorithm’s computational mechanism is presented in detail. On a comparative basis, scrutinized 
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are the proposed algorithm’s speed capabilities in FPGA, For the purpose, developed is a specific 
methodology to test speed with respect to the two capital paremeters: the highest clock frequency of 
execution and the minimum number of clock cycles needed to secure an exact result at the highest 
clock rate. Test results show that the proposed algorithm is from 19.9 to 48.7 times faster than the two 
most widely used approaches for calculating high and low thresholds in FPGA based Canny - non-
uniform quantizing and in-class variance. The analysis of experimental results proves that it is most 
favourable to pipelining efficiency. Therefore, the proposed algorithm for dynamically calculating 
high and low thresholds can serve as a reliable building block in FPGA based Canny focused on 
maximum performance.           
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