

Optimal speed algorithm for calculating high and low
thresholds to be used in FPGA based Canny focused on
maximum performance

Dimitre Kromichev

Department of Marketing and International Economic Relations, University of
Plovdiv, 24 Tzar Asen Street, Plovdiv 4000, Bulgaria

dkromichev@yahoo.com

Abstract. The paper presents an optimal speed algorithm for accurately calculating high and
low thresholds. It is to be used in FPGA based Canny targeting maximum performance.
Scrutinized is the proposed algorithm’s computational mechanism. Its functionality is set forth
in detail. Proved is the algorithm’s practicality in terms of guaranteeing the calculation of the
most appropriate threshold values in a dynamic fashion. On a comparative basis, explored amd
analyzed are the proposed algorithm’s capabilities to ensure reliable results at optimal speed
under all test conditions.

1. Introduction
Speed has two capital parameters: the highest clock frequency of execution and the minimum number
of clock cycles needed to secure an exact result at the highest clock rate. Selecting the appropriate high
and low thresholds is crucial to the detected contours’ precision.

The objective of this paper is to propose an optimal speed algorithm for calculating high and low
thresholds to be used in FPGA based Canny targeting maximum performance on the platform of total
mathematical accuracy. The task is to scrutinize the presented algorithm in terms of its computational
mechanism and explore its performance with respect to the two capital speed parameters. Relevant to
the conducted experiments and conclusions arrived at are only gray-scale images. The software tool
utilized to to ascertain the total number of high and low threshold selection options is Scilab. The
targeted hardware is Intel (Altera) FPGAs. The following ten Intel (Altera) FPGA families are used in
the tests: 130 nm, 90 nm, 65 nm, 40 nm, 28nm, Cyclone, Cyclone II, III, IV, V; 130 nm, 90 nm, 65
nm, 40 nm and 28nm Stratix, Stratix II, III, IV, V. Intel (Altera) Quartus, ModelSim and TimeQuest
Timing Analyzer are utilized for exploring the feasibility and practicality of the proposed algorithm.

2. Survey of the available approaches
 In distributed Canny on Xilinx Virtex 4 and 5 [1[[2][6][7][10], the thresholds’ calculation is
modified to enable parallel processing. A 64-bin uniform discrete histogram is used for the high
threshold calculation. This entails performing 64 multiplications and comparisons. All simulations are
for 512x512 images and are performed at a maximum clock rate of 100 MHz. It is pointed out [3][4]
that Canny is hard to work in real time due to its computational complexity. The proposed
implementation uses block classification for adaptive thresholding. Direct implementation of Canny
algorithm is too slow to be employed in real-time applications [8][9][12]. To enable parallel

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

© Journal of the Technical University - Sofia
 Plovdiv branch, Bulgaria
 “Fundamental Sciences and Applications”
 Vol. 25, 2019

processing the input image is divided into m×m overlapping blocks. Uniformly quantized gradient
magnitude histograms are computed on overlapped blocks. A threshold selection algorithm based on
the distribution of pixel gradients in a block of pixels is used. The high threshold is computed on the
basis of the histogram. The lower threshold is 40% of the higher threshold. Setting the thresholds by
experience requires repeated tests to find the appropriate value [11]. It is underlined that needed is an
adaptive method to automatically select the most appropriate thresholds by combining the image
characteristics [5].
 With respect to the two capital speed parameters, none of the aforesaid approaches are up to
accomplishing the goal of achieving maximum performance in FPGA based Canny.

3. The proposed algorithm for calculating high and low thresholds
The task to start with is: define a staple set of minimum steps between two successive high threshold
values and select sets of ratios between high and low thresholds, and on that basis, ascertain the
possible number of thresholds with respect by steps and ratios. The achieved results are:

Table 1. Total number of high and low threshold selection options.

Values
Minimum step between two successive high threshold values

5 7 10
Ratios b/n high and low threshols Ratios b/n high and low threshols Ratios b/n high and low threshols

Parameters

2, 2.2, 2.5, 2.8, 3 2, 2.5, 3 2, 2.2, 2.5, 2.8, 3 2, 2.5, 3 2, 2.2, 2.5, 2.8, 3 2, 2.5, 3
High thresholds 50 50 36 36 25 25
High threshold range [5,250] [5,250] [7,252] [7,252] [10,250] [10,250]
Pairs of thresholds 250 150 180 108 125 75

 The goal of the proposed algorithm is to provide optimally fast computing of the high and low
threshold values by satisfying the following computational requirements: 1) Compute the thresholds in
a dynamic fashion - simultaneously with the non-maximum suppression, to boost pipelining; 2) Total
mathematical accuracy; 3) Utilize only the fastest FPGA arithmetic; 4) Avoid iterative calculations.
 The algorithm encompasses the following sequence of steps:
1) Define the range of positive integers the high threshold calculation will be based upon. It represents
a closed interval whose minimum and maximum values Nmin and Nmax are selected such that the
result of [(Nmax+1) – Nmin] is equal to a number whose factor is 7, and (Nmax+Nmin) < .
2) The interval from step 1) is divided into equal subintervals whose minimum and maximum values
SUB_Nmin and SUB_Nmax are related by the equation: [(SUB_Nmax+1) – SUN_Nmin] = 7. Each
subinterval is associated with one reference value which is equal to the fourth out of the seven
consecutive values contained in this subinterval.
3) Define a set of table values – they are positive integers calculated by dividing all the values in the
interval [5, 250] by each of these five values {2, 2.2, 2.5, 2.8, 3} prior to starting executing the
algorithm.
4) Define a set of counters. Each counter is associated with one of the subintervals from step 2).
5) Starting with non-maximum suppressed image pixel #1, each pixel is assessed with respect to its
value falling or not falling within one of the subintervals from step 2). If the pixel value is within an
interval, the counter associated with this particular interval is incremented.
6) With all the pixels having been subjected to the assessment procedure from step 5), the values in
each of the counters defined in step 4) are compared to select the two largest among them. On the
basis of these largest values, one of the subintervals and the reference value associated with it is
compared with the other of the two largest intervals and its reference value.
7) Calculate the difference between the two reference values for the purpose of further defining a new
interval. The number of pixels in this new interval is equal to the difference between the two reference
values. In the interval thus defined, the leftmost value is equal to the larger of the two selected
reference values in step 6). The rightmost value is equal to the smaller of the two selected reference
values in step 6).

 2

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

8) Explore the values within the new interval defined in step 7) to ascertain the smallest among them.
This value is the high threshold.
9) The high threshold is associated with a set to five table values calculated in advance by using
divisors {2, 2.2, 2.5, 2.8, 3} as described in step 3).
10) Select the appropriate table value from step 3). This is the low threshold.
 The compitational mechanism of the algorithm is presented in Figure 1.

Figure 1. Functional model of the algorithm for calculating high and low thresholds

4. Exploring the algorithm’s mathematical accuracy
The table values are calculated by using the values within the interval [5, 250] as dividends, and the
divisors are each of {2, 2.2, 2.5, 2.8, 3}. They are computed in advance for the purpose of avoiding
delays in the very essential process of calculating the thresholds. The table values are integers stored
prior to starting Canny’s execution, thus no mathematical operation is required to be used. In view of
the fact that there are five divisors, there is an option to switch between the different tables containing
results obtained by utilizing different divisors. This renders the selection of the low threshold more
adaptive and flexible, depending on the particular input image statistics. The aim is to ensure an
optimal range of options without resorting to additional integer arithmatic calculations.

5. Exploring the algorithm’s speed capabilities in FPGA
To evaluate the proposed algorithm’s performance, employed is the following methodology: 1) Select
ten real life images of equal size and execute Canny using Scilab Image and Video Processing
Toolbox, Scilab Image processing Design Toolbox; 2) Store the ten image matrices obtained after
executing the non-maximum suppresssion module into separate files using Scilab; 3) Define ROM
using Quartus; 4) Open a Memory initialization file (.mif) in Quartus; 5) Store each non-maximum
suppressed image matrix into a .mif file; 6) Write VHDL programs to implement the algorithms being
compared; 7) Comparatively evaluate the proposed algorirthm’s performance using non-uniform
quantizing and in-class variance algorithms in terms of the two capital speed paremeters - the highest
clock frequency and the minimum number of clock cycles needed to secure an exact result at the
highest clock rate, by conducting performance tests on the ten non-maximum suppressed image
matrices.

[Nmin, Nmin+6] [Nmin+7, Nmin+(2*7-1)] [Nmin+2*7, Nmin+(3*7-1)] [Nmin + Nmax-7, Nmax]

Low threshold

Define the new interval on the basis of the
two largest reference values and select the

smallest value contained

C1 C2 C3 C4 …. C [(Nmax-1) - Nmin]/7]

Intervals associated with reference values

 Divisors {2, 2.2, 2.5, 2.8, 3}

High threshold

Select the two largest reference values with
respect to the contents of the counters

 3

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

 The achieved results are exhibited in the tables below.

Table 2. Capital speed parameters for the high and low threshold calculation using the proposed
algorithm.

Values
Capital speed parameters for the high and low threshold calculation using the proposed algorithm

Total number of clock cycles taken to secure mathematically accurate result
Non-maximum suppressed image matrices

FPGA
family

Maximum
clock frequency

(MHz) 1 2 3 4 5 6 7 8 9 10
Cyclone 196 68 75 80 73 81 67 88 76 82 89
Cyclone II 246 68 75 80 73 81 67 88 76 82 89
Cyclone III 349 68 75 80 73 81 67 88 76 82 89
Cyclone IV 367 68 75 80 73 81 67 88 76 82 89
Cyclone V 385 68 75 80 73 81 67 88 76 82 89
Stratix 291 68 75 80 73 81 67 88 76 82 89
Stratix II 385 68 75 80 73 81 67 88 76 82 89
Stratix III 502 68 75 80 73 81 67 88 76 82 89
Stratix IV 548 68 75 80 73 81 67 88 76 82 89
Stratix V 586 68 75 80 73 81 67 88 76 82 89

Table 3. Capital speed parameters for the high and low threshold calculation using the non-uniform
quantizing algorithm.

Values
Capital speed parameters for the high and low threshold calculation using the non-uniform quantizing algorithm

Total number of clock cycles taken to secure mathematically accurate result
Non-maximum suppressed image matrices

FPGA
family

Maximum clock
frequency

(MHz) 1 2 3 4 5 6 7 8 9 10
Cyclone 149 885 946 962 935 892 928 912 964 899 908
Cyclone II 192 885 946 962 935 892 928 912 964 899 908
Cyclone III 228 885 946 962 935 892 928 912 964 899 908
Cyclone IV 231 885 946 962 935 892 928 912 964 899 908
Cyclone V 234 885 946 962 935 892 928 912 964 899 908
Stratix 226 885 946 962 935 892 928 912 964 899 908
Stratix II 302 885 946 962 935 892 928 912 964 899 908
Stratix III 426 885 946 962 935 892 928 912 964 899 908
Stratix IV 442 885 946 962 935 892 928 912 964 899 908
Stratix V 464 885 946 962 935 892 928 912 964 899 908

Table 4. Capital speed parameters for the high and low threshold calculation using the in-class
variance algorithm.

Values
Capital speed parameters for the high and low threshold calculation using the in-class variance algorithm

Total number of clock cycles taken to secure mathematically accurate result
Non-maximum suppressed image matrices

FPGA
family

Maximum clock
frequency

(MHz) 1 2 3 4 5 6 7 8 9 10
Cyclone 149 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Cyclone II 192 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Cyclone III 228 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Cyclone IV 231 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Cyclone V 234 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Stratix 226 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Stratix II 302 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Stratix III 426 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Stratix IV 442 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918
Stratix V 464 1884 1928 1846 1952 1908 1943 1959 2008 1949 1918

 Table 5 presents the resources utilized by the proposed algorithm in Intel (Altera) Cyclone V E
5CEBA4F17C6N Device. The exibited data proves that the algorithm’s advanced computational
mechanism ensures its being quite economical in utilizing the FPGA resources. This is mainly due to
the optimized number of essential arithmetic operations and the technology of handling the entire
image statistics.

 4

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

Table 5. Resources utilized by the proposed algorithm in Intel (Altera) Cyclone V E
5CEBA4F17C6N Device.

FPGA Resource Resource Counts Used Resource utilization
Logic utilization (in ALMs) 18480 228 1.2337 %
Total registers - 80 -
Total block memory bits 3168512 0 0 %
Total DSP blocks 66 0 0 %

6. Analysis of results
The data in Table 2 shows that the proposed algorithm is capable of executing at optimal clock
frequency in each of the targeted FPGA platforms. This is due to the fact that all comparison functions
are replaced with subtraction and checking the result for being larger or equal to zero.
 The proposed algorithm demonstrates two substantial advantages: 1) It calculates the exact high
threshold value on the basis of using intervals at two levels; 2) All the clock cycles required for
calculating the leftmost and the rightmost values of the lower level interval are equal to the number of
counters + 1. The lower level interval having been defined, its values are compared on the basis of the
same subtraction procedure as the higher level intervals. The number of values to be compared here
varies and depends on the difference between the leftmost and the rightmost values. It is this fact that
determines the difference between the number of clock cycles required to calculate the two thresholds
for the tested ten non-maximum suppressed image matrices (Table 2).
 The proposed algorithm selects the low threshold value directly from a table of values computed in
advance. Thus, the high threshold having been calculated, there is no need of any further arithmetic
operations to obtain the low threshold. Therefore, in terms of clock cycles required to compute the two
thresholds, the proposed algorithm is most favourable to optimal pipelining efficiency.
 Both the non-uniform quantizing and in-class variance algorithms rely on comparison function to
determine the largest or the smallest values. Hence, their execution frequencies are lower. In terms of
clock rate, another very unfavourable aspect is that they use division to calculate the low threshold.
The maximum clock frequencies exhibited in Tables 3 and 4 represent non-uniform quantizing and in-
class variance implementations in which division is replaced with calculating the low thresholds by
using precomputed reference table values. In this way, the comparison between the proposed
algorithm and the non-uniform quantizing and in-class variance algorithms is drawn on equal terms. If
conventional division had been used instead, the naximum frequencies of the non-uniform quantizing
and in-class variance algorithms would have been from 5.2 to 6.4 times as low. Their computational
mechanisms being entirely based on iterations, the total number of clock cycles taken to calculate the
two thresholds is from 12.7 to 32.5 times larger than the number of clock cycles required by the
proposed algorithm (Tables 2, 3 and 4).
 For the tests, it is assumed that all the algorithms start the computation of the high threshold under
the same conditions – the data regarding the non-maximum suppressed image statistics has already
been obtained in compliance with each of the targeted algorithms’ specifics. And here is the crucial
difference between the proposed algorithm and the other two approaches. The proposed algorithm
acquires the necessary information on the image statistics dynamically – simultaneously with the non-
maximum suppression execution. Therefore, as soon as all pixels have been processed in the non-
maximum suppression module, the calculation of the high threshold can start without any delay. The
non-uniform quantizing and in-class variance algorithms acquire the necessary information in
sequential fashion – after the non-maximum suppression computations have finished. Therefore,
delays equal to the number of clock cycles taken to perform operations on the entire non-maximum
suppression image matrix must be added to the clock cycles exhibited in Table 3. This results in
blocking the pipelining for additional number of clock cycles proportional to the image size.
 Considering both capital speed parameters, the proposed algorithm is from 19.9 to 48.7 times faster
than the non-uniform quantizing and in-class variance. It is optimal in the speed domain.

7. Conclusion
Proposed is an optimal speed algorithm for calculating high and low thresholds in FPGA based Canny.
The algorithm’s computational mechanism is presented in detail. On a comparative basis, scrutinized

 5

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

are the proposed algorithm’s speed capabilities in FPGA, For the purpose, developed is a specific
methodology to test speed with respect to the two capital paremeters: the highest clock frequency of
execution and the minimum number of clock cycles needed to secure an exact result at the highest
clock rate. Test results show that the proposed algorithm is from 19.9 to 48.7 times faster than the two
most widely used approaches for calculating high and low thresholds in FPGA based Canny - non-
uniform quantizing and in-class variance. The analysis of experimental results proves that it is most
favourable to pipelining efficiency. Therefore, the proposed algorithm for dynamically calculating
high and low thresholds can serve as a reliable building block in FPGA based Canny focused on
maximum performance.

References
[1] Aasiya Anjum and Sanjay Asutkar 2015 FPGA Implementation of Efficient Edge Detection
 Using Canny Algorithm International Journal on Recent and Innovation Trends in Computing
 and Communication Vol. 3 (2), pp. 20-22
[2] Divya. D, Sushmap S. 2013 FPGA Implementation of a Distributed Canny Edge Detector
 International Journal of Advanced Computational Engineering and Networking Vol. 1 (5),
 pp. 46-51
[3] Sangeetha D., Deepa P. 2016 An Efficient Hardware Implementation of Canny Edge
 Detection Algorithm 2016 International Conference on VLSI Design and 2016 International
 Conference on Embedded Systems (VLSID) pp. 817-822
[4] Sangeetha D., Deepa P. 2016 FPGA implementation of cost-effective robust Canny edge
 detection algorithm Journal of Real-Time Image Processing (JRTIP) Vol. 12 (1), pp. 1-14
[5] Fangxin Peng, Xiaofeng Lu, Hengli Lu, Sumin Shen 2012 An Improved high-speed canny
 edge detection algorithm and its implementation on FPGA Proceedings of SPIE, Fourth
 International Conference on Machine Vision (ICMV 2011): Computer Vision and Image
 Analysis; Pattern Recognition and Basic Technologies, Conference Vol. 8350, pp. 402-406
[6] Heena S. Shaikh, Narayan V. Marathe 2017 Implementation Of Distributed Canny Edge
 Detection Technique International Research Journal of Engineering and Technology (IRJET)
 Vol. 04 (05), pp. 2926-2928
[7] Lakshmamma K M., Chandana B.R 2015 RTL Design and FPGA Implementation of Canny
 Edge Detector with Real Time Threshold Adjustment Capability International Journal of
 Science and Research (IJSR) Vol. 4 (4), pp. 1731-1733
[8] Poonam S. Deokar and Anagha P. Khedkar 2015 Implementation of Modified Distributed
 Canny Edge Detector Algorithm Using FPGA International Journal of Information Research
 and Review Vol. 2 (8), pp. 999-1003
[9] Qian Xu, Srenivas Varadarajan, Chaitali Chakrabarti, Lina J. Karam 2014 A Distributed
 Canny Edge Detector: Algorithm and FPGA Implementation IEEE Transactions on Image
 Processing Vol. 23 (7), pp. 2944 – 2960
[10] Rupalatha T., Leelamohan C., Sreelakshmi M. 2013 Implementation of distributed Canny edge
 detection on FPGA International Journal of Innovative Research in Science, Engineering and
 Technology Vol. 2, (7), pp. 2618-2626
[11] Thombare Ashwini, S. B. Bagal 2015 A Distributed Canny Edge Detector with Threshold
 Segmentation International Journal of Modern Trends in Engineering and Research IJMTER,
 pp. 1567-1572
[12] Veeranagoudapatil, Chitra Prabhu 2015 Distributed Canny Edge Detector: Algorithm &
 FPGA Implementation International Journal for Research in Applied Science & Engineering
 Technology (IJRASET) Vol. 3 (5), pp. 586-588

 6

Copyright © 2019 by Technical University - Sofia, Plovdiv branch, Bulgaria 	 Online ISSN 2603-459X

