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Abstract. The earliest papers on applications of the finite element method for solving partial 
differential equations were related to one-dimensional problems. In the present day, the finite 
element method has been successfully applied for solving boundary and eigenvalue problems in 
higher-dimensional Euclidean spaces. The minimal measure of degeneracy of the simplicial 
elements depends on the dimension of the finite space. It tends to infinity when the dimension 
of the Euclidean space grows up unbounded. The pyramidal elements are relatively new 
compared to hexahedral and simplicial elements. The major role of the pyramids is to assure 
conforming coupling between structured and unstructured finite element meshes. This paper 
deals with the rate of divergence of the sequence of pyramidal finite elements. Detailed proofs 
of two divergence theorems are obtained. For illustrations, the results of the theorems are 
presented graphically. 
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1. Introduction 
The pioneering paper on three-dimensional pyramidal elements has been written by Bedrosian [2] way 
back in the early nineties. The role of the pyramidal finite elements as transitional elements between 
hexahedral and simplicial meshes has been clarified by Ainsworth and Fu in [1]. The pyramidal elements 
have been an object of great interest in the last decades [3,8,9,10,12]. The computational cost of each 
kind of element determines the location of the corresponding elements in the composite finite element 
triangulation. The hypercubic elements are located in the interior subdomain, the 𝑘𝑘-pyramids are in the 
interface subdomain and the simplicial elements are used in the boundary layer.   Basic results on the n-
dimensional finite element method have been published by Brandts et al. [5,7]. In [6], the authors have 
given the answer to the question of why the finite element method can be used in multidimensional 
Euclidean spaces. Properties of 𝑛𝑛-dimensional simplicial finite elements have been studied by Brandts 
et al. [6] and Petrov and Todorov [11]. The rate of divergence generated by various sequences of 
simplicial elements has been determined by Petrov and Todorov in the latter paper.  

This paper is devoted to the rate of divergence of sequences of pyramidal elements. Due to 
considerable practical importance, we study the case of canonical pyramidal elements in a separate 
theorem. Additionally, we consider the increment of the degeneracy measure depending on the height 
of the elements. Rigorous proofs of the divergence theorems are the major contributions of the paper. 
Dependence of the degeneracy measure on the height of the elements and the dimension of the Euclidean 
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spaces is presented graphically. The interface subdomains are always canonical or at least parallelotopial 
even in the case when the original domain is curved and with a complex geometry. Therefore, irregular 
pyramidal elements are beyond our consideration.  

2. Divergence analysis of the pyramidal elements 
The space 𝐑𝐑𝑛𝑛 is the 𝑛𝑛-dimensional Euclidean space provided with the norm || ⋅ ||. Let 𝑃𝑃 be a convex 
polytope in 𝐑𝐑𝑛𝑛.We denote: the diameter of 𝑃𝑃 by 𝑑𝑑(𝑃𝑃); the n-dimensional volume of 𝑃𝑃 by vol𝑛𝑛(𝑃𝑃); the 
set of all vertices of 𝑃𝑃 by 𝑉𝑉(𝑃𝑃); and the center of gravity of the polytope by G(P). 
 
Definition 1 The degeneracy measure of an arbitrary convex polytope 𝑃𝑃 is equal to 
 

 𝛿𝛿(𝑃𝑃) = vol𝑛𝑛−1(𝜕𝜕𝜕𝜕)𝑑𝑑(𝜕𝜕)
2𝑛𝑛vol𝑛𝑛(𝜕𝜕) . (1) 

 

This measure has been used in a finite element analysis of simplicial elements by Bey [4]. 
 
Definition 2 Petrov and Todorov [11]. Let {𝑇𝑇𝑛𝑛}, be a sequence of polytopes in 𝐑𝐑∞ . The number 
𝛼𝛼({𝑇𝑇𝑛𝑛}) defined by 𝛿𝛿(𝑇𝑇𝑛𝑛) = 𝑂𝑂(𝑛𝑛𝛼𝛼) is called the rate of divergence for the sequence {𝑇𝑇𝑛𝑛}. 
 
Each 𝑛𝑛-dimensional hypercube can be tessellated by 2𝑛𝑛 regular (𝑛𝑛 − 1)-hypercubic pyramids. For 
instance, each tesseract can be tessellated by eight regular cubic pyramids. 
 
Definition 3 The regular (𝑛𝑛 − 1)-hypercubic pyramids that tessellate an n-dimensional hypercube are 
called canonical. 
 
Let 𝐶𝐶𝑛𝑛 be an n-dimensional unit hypercube 

 �̂�𝐶n = {𝑥𝑥 ∈ 𝐑𝐑𝑛𝑛 | 0 ≤ 𝑥𝑥𝑖𝑖 ≤ 1,   𝑖𝑖 = 1,2, … ,𝑛𝑛},   𝑛𝑛 ∈ 𝐍𝐍.  

The denotation 

 𝑃𝑃𝑛𝑛 = [𝑝𝑝1,𝑝𝑝1, … ,𝑝𝑝𝑚𝑚]  

stands for an 𝑛𝑛-dimensional polytope with vertices 𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑚𝑚. We denote the class of all 
polytopes that are geometrically similar to the polytope P by [P]. 

The pyramid 

 �̂�𝑃𝑛𝑛 = [𝑉𝑉(�̂�𝐶𝑛𝑛−1), (�̂�𝐶𝑛𝑛)]  

is chosen for the reference element. 
Concerning a hypercubic pyramid 𝑃𝑃, we introduce the following denotations: 
 𝐴𝐴(𝑃𝑃) is the apex of 𝑃𝑃; 
 𝐵𝐵(𝑃𝑃) is the base of 𝑃𝑃; 
 𝐻𝐻(𝑃𝑃) is the length of the height of 𝑃𝑃; 
 ℎ(𝑃𝑃) is the length of the slant height of 𝑃𝑃; 
 𝐿𝐿(𝑃𝑃) is the base length; 
 𝑙𝑙(𝑃𝑃) is the length of the lateral edge of 𝑃𝑃. 

The canonical pyramids play an important role in the multidimensional finite element method. That is 
why, we study the divergence rate 𝛼𝛼𝜕𝜕 of the sequence {𝑃𝑃𝑛𝑛},𝑃𝑃𝑛𝑛 ∈ [�̂�𝑃𝑛𝑛] by the next theorem. 
 
Theorem 1 The degeneracy measure 𝛿𝛿(𝑃𝑃𝑛𝑛), 𝑃𝑃𝑛𝑛 ∈ [�̂�𝑃𝑛𝑛], generated by the canonical pyramidal 
elements is 

 𝛿𝛿(𝑃𝑃𝑛𝑛) = √𝑛𝑛 − 1(1 + √2).   
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Proof. In the first part of the proof, we obtain that 

 vol𝑛𝑛−1(𝜕𝜕�̂�𝑃𝑛𝑛) = 1 + √2,   ∀𝑛𝑛 ≥ 2.                                                 (2) 
 

All lateral facets of the n-dimensional pyramidal element �̂�𝑃𝑛𝑛 are identical, therefore they have the same 
volume. To calculate vol𝑛𝑛−1(𝜕𝜕�̂�𝑃𝑛𝑛) we consider a lateral facet 

 �̂�𝑃𝑛𝑛−1 = [𝑉𝑉(�̂�𝐶𝑛𝑛−2),𝐺𝐺(�̂�𝐶𝑛𝑛)]  

The height ℎ(�̂�𝑃𝑛𝑛) is independent of n due to 
 

𝐻𝐻(𝑃𝑃𝑛𝑛−1) = dist(𝐺𝐺(�̂�𝐶𝑛𝑛−2),𝐺𝐺(�̂�𝐶𝑛𝑛)) 
  

= dist((1
2 , 1

2 , … , 1
2 , 0,0) , (1

2 , 1
2 , … , 1

2)) = √2
2 . 

 

The pyramid �̂�𝑃𝑛𝑛 has 2(𝑛𝑛 − 1) lateral facets. Since vol𝑛𝑛−1 (𝐵𝐵(�̂�𝐶𝑛𝑛−2)) = 1, therefore 

 vol𝑛𝑛−1(𝑃𝑃𝑛𝑛−1) = √2
2(𝑛𝑛−1).  

and (2) is proved. 
From the definition of �̂�𝑃𝑛𝑛 it follows that 
 

 vol𝑛𝑛(�̂�𝑃𝑛𝑛) = 1
2𝑛𝑛 vol𝑛𝑛(�̂�𝐶𝑛𝑛) = 1

2𝑛𝑛. (3) 

 

On the other hand, 𝑑𝑑(�̂�𝑃𝑛𝑛) is equal to the space diagonal of �̂�𝐶𝑛𝑛−1, i.e. 
 

 𝑑𝑑(�̂�𝑃𝑛𝑛) = √𝑛𝑛 − 1. (4) 

 
It remains to substitute (2), (3) and (4) in (1) in order to complete the proof.□ 
Theorem 1 guarantees that 𝛼𝛼𝑃𝑃 = 1

2. 
 
Remark 1 From the proof of Theorem 1 it follows that vol𝑛𝑛−1(∂�̂�𝑃𝑛𝑛) is independent of n. 
 
In the next theorem, we extend the result declared by Theorem 1. Theorem 2 describes the increment of 
the degeneracy measure by varying the height 𝐻𝐻 of the regular pyramid 𝑃𝑃𝑛𝑛. 
 
Theorem 2 The sequence of regular hypercubic pyramids {𝑃𝑃𝑛𝑛(𝐻𝐻)} has a rate of divergence 

 𝛼𝛼(𝑃𝑃𝑛𝑛(𝐻𝐻)) = 1
2 ,∀𝐻𝐻 ≥ 2.   

Proof. Since all regular hypercubic pyramids with the same ratio 𝐻𝐻(𝑃𝑃)
𝐿𝐿(𝑃𝑃) has the same measure of 

degeneracy we can fix the base length to one and vary the height in order to study the rate of divergence 
of the sequence {𝑃𝑃𝑛𝑛}. We choose a representative  
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�̂�𝑃𝑛𝑛(𝐻𝐻) = [𝑉𝑉(�̂�𝐶𝑛𝑛−1),𝐴𝐴 (1
2 , 1

2 , … , 1
2 ,𝐻𝐻)]  

 
of the class of the n-dimensional regular hypercubic pyramids. We consider a lateral facet 
 

𝑃𝑃𝑛𝑛−1(𝐻𝐻) = [𝑉𝑉(�̂�𝐶𝑛𝑛−2),𝐴𝐴] 
of the element �̂�𝑃𝑛𝑛(𝐻𝐻). The volume of the boundary  
 

 vol𝑛𝑛−1(𝜕𝜕�̂�𝑃𝑛𝑛(𝐻𝐻)) = 2(𝑛𝑛 − 1)vol𝑛𝑛−1(𝑃𝑃𝑛𝑛−1(𝐻𝐻)) + vol𝑛𝑛−1(𝐵𝐵(𝑃𝑃𝑛𝑛−1(𝐻𝐻)))  

 

= 2ℎ(�̂�𝑃𝑛𝑛) + 1 = 2dist (𝐺𝐺(�̂�𝐶𝑛𝑛−2),𝐴𝐴 (�̂�𝑃𝑛𝑛(𝐻𝐻))) + 1 

  

= 2‖(0,0, … 0,0, 1
2 ,𝐻𝐻)‖ + 1 = √1 + 4𝐻𝐻2 + 1. 

 
The volume of the pyramidal element 
 

vol𝑛𝑛(�̂�𝑃𝑛𝑛(𝐻𝐻)) = 1
𝑛𝑛 vol𝑛𝑛−1(𝐵𝐵(�̂�𝑃𝑛𝑛(𝐻𝐻)))𝐻𝐻 = 𝐻𝐻

𝑛𝑛 . 

 

The next step is to calculate the diameter 

 

𝑑𝑑 (�̂�𝑃𝑛𝑛(𝐻𝐻)) = max {𝑑𝑑 (𝐵𝐵 (�̂�𝑃𝑛𝑛(𝐻𝐻))) , 𝑙𝑙(�̂�𝑃𝑛𝑛(𝐻𝐻))} 

  

= max {√𝑛𝑛 − 1,‖(−1
2 ,−1

2 , … ,−1
2 , 1

2 ,𝐻𝐻)‖} 

  

= max {√𝑛𝑛 − 1, 1
2√𝑛𝑛 − 1 + 4𝐻𝐻2}. 

 
Thus, for the measure of degeneracy, we obtain 
 

𝛿𝛿 (�̂�𝑃𝑛𝑛(𝐻𝐻)) = {
𝜑𝜑(𝐻𝐻)√𝑛𝑛 − 1, 𝑖𝑖𝑖𝑖 𝐻𝐻 ≤ 1

2√3(𝑛𝑛 − 1)
1
2𝜑𝜑(𝐻𝐻)√𝑛𝑛 − 1 + 4𝐻𝐻2, otherwise

, 
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where 𝜑𝜑(𝑥𝑥) = 1+√1+4𝑥𝑥2
2𝑥𝑥 . The latter confirms the statement of the theorem. □ 

 
Figure 1. Dependence of the measure of degeneracy on 𝐻𝐻 and 𝑛𝑛. 

 
The results of Theorem 2 are presented graphically in Figure 1. 

Let {𝑅𝑅𝑛𝑛} be the sequence of regular simplices in 𝐑𝐑∞ with a rate of divergence 𝛼𝛼𝑅𝑅𝑅𝑅. Then 

 𝛼𝛼𝑃𝑃 < 𝛼𝛼𝑅𝑅𝑅𝑅 (5) 

and 

 𝛿𝛿(�̂�𝑃𝑛𝑛) = 𝛿𝛿(𝑅𝑅𝑛𝑛),   ∀𝑛𝑛 ≥ 10.  

We emphasize the fact that 

 𝛿𝛿(𝑅𝑅𝑛𝑛) = 𝛿𝛿(�̂�𝑃𝑛𝑛),   ∀𝑛𝑛 < 10  

despite (5). 

3. Conclusion 
The divergence rate of the sequence of pyramidal finite elements is determined. All kinds of regular 
hypercubic pyramidal elements are analyzed. A comparison between the divergence rate of the sequence 
of canonical pyramids and the one generated by the sequence of regular simplices is done. We establish 
that the rate of divergence in the regular pyramidal elements is twice lower than the optimal divergence 
rate for the simplicial elements. Despite this, the regular simplices have a better measure of degeneracy 
than the canonical pyramids for all n so that 2 ≤ 𝑛𝑛 ≤ 9. The (𝑛𝑛 − 1)-dimensional volume of the 
boundary of each canonical hyperpyramid obtained from the 𝑛𝑛-dimensional unit hypercube is a constant. 
The phenomenon (2) is available in each Euclidean space with 𝑛𝑛 ≥ 2.  
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