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Abstract. A linear telegraph equation with periodic boundary conditions is chosen for a model 
problem in this paper. The model problem is used in order to be illustrated a new finite element 
method for solving hyperbolic boundary value problems. There are various weak forms of the 
telegraph equation that have been in use up to now. An original weak problem related to the 
problem of interest is obtained. A detailed multigrid algorithm describing the essence of the 
considered method is developed. Numerical simulations including smoothing of an error 
function and a graph of an approximate solution are demonstrated. An approximate asymptotic 
rate of convergence is calculated by applying three successive triangulations and cubic trial 
functions. 

1.  Introduction and setting of the problem 
There are too many papers [16, 19, 25, 27, 31, 35] that consider the initial-boundary value problem for 
telegraph equations in unbounded domains. But just a few researchers [13, 35] have studied a telegraph 
equation in bounded domains. The linear telegraph equation with doubly periodic boundary conditions 
has been investigated for well-posedness by Ortega and Robles-Pérez [26]. They have proved that the 
telegraph operator 

 
𝐿𝐿𝐿𝐿 = 𝐿𝐿𝑡𝑡𝑡𝑡 − 𝑎𝑎𝐿𝐿𝑥𝑥𝑥𝑥 + 𝛽𝛽𝐿𝐿𝑡𝑡 − 𝛼𝛼(𝑧𝑧)𝐿𝐿, 𝑧𝑧 = (𝑥𝑥, 𝑡𝑡) 

 
satisfies the maximum principle if the variable coefficient 𝛼𝛼 is estimated by a function depending on the 
constant 𝛽𝛽 and 𝑎𝑎 = 1. Ortega and Robles-Pérez suppose that the coefficient 𝛼𝛼 is a doubly periodic 
function. Additionally, the authors declare a unique solution of the linear telegraph equation when the 
maximum principle holds. On the other hand, they have clearly shown a class of coefficients in the 
telegraph operator that generate multiple solutions of the hyperbolic boundary value problem with 
periodic boundary conditions. Further, Mawhin [21] and Mawhin et al. [22, 23] have extended the results 
of Ortega and Robles-Pérez in various multidimensional cases. The periodic solutions of the telegraph 
equation have also been studied by Grossinho and Nkashama [12], and Kim [15]. They have 
independently investigated similar nonlinear telegraph equations. De Araújo et al. consider 
multidimensional telegraph equation with time-periodic and Dirichlet boundary conditions. They 
established a unique weak solution in the multidimensional nonlinear case. A nonlinear telegraph 
equation with more complicated time-periodic boundary conditions has been investigated by 
Kharibegashvili and Dzhokhadze in [14].  
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Various numerical methods have been applied for solving the telegraph equation in the last decades. 
The semidiscrete finite element method for the initial-boundary value problem has been analyzed by 
Larson and Thomée [16] in order to solve the wave equation. Another semidiscrete approach has been 
realized for the wave-diffusion equation by Chen et al. [8]. Such kind of methods can be successfully 
applied to solve the telegraph equation. The time-marching method is a kind of meshless numerical 
method used by Lin et al. [19] for solving the initial-boundary value problem. The wavelet solutions 
based on Haar basis functions have been analyzed in [5, 24]. B-Splines are the basic tools for solving 
the initial-boundary value problem for the second-order one-dimensional telegraph equation in the 
papers written by T. Nazir et al. [25]. The boundary element method [10], the finite difference method 
[2], and collocation methods [13] have also been applied for solving the telegraph equation. A space-
time continuous Galerkin method has been investigated for convergence by Zhao et al. [35]. Chen et al. 
[8] have created a two-grid method for an initial hyperbolic boundary value problem in a bounded 
domain. The same finite element approach can be applied to the telegraph equation. We also have to 
mention some papers [6, 27, 31, 34], which present numerical simulations of the solutions of linear 
telegraph equations. 

Most of the authors [25, 27, 35] solving the telegraph equation use separate triangulations in time 
and space.  

We introduce some basic definitions and denotations. Let Ω be a rectangular domain 
 

Ω = {𝑧𝑧(𝑥𝑥, 𝑡𝑡) | 0 <  𝑥𝑥 <  𝑙𝑙, 0 <  𝑡𝑡 <  𝑇𝑇}. 
The edges 

 
𝛤𝛤0 = {(𝑥𝑥, 0) | 0 <  𝑥𝑥 <  𝑙𝑙} 

and 
 

𝛤𝛤𝑇𝑇  = {(𝑥𝑥,𝑇𝑇) | 0 <  𝑥𝑥 <  𝑙𝑙} 
 

are used in the further analyses. The real Sobolev space 𝐻𝐻𝑛𝑛(Ω) for n nonnegative integer is provided 
with the norm || ⋅ ||𝑛𝑛,Ω and the seminorm  | ⋅ |𝑛𝑛,Ω. 

A completely different approach for solving the telegraph equation is created in this paper. The 
proposed method is an alternative to the finite difference methods and wavelet methods for hyperbolic 
boundary value problems. This paper is devoted to a finite element method for the one-dimensional 
telegraph equation 

𝐿𝐿𝐿𝐿 = 𝑓𝑓  in  Ω, 𝛼𝛼, 𝑓𝑓 ∈ 𝐿𝐿2(Ω)                                                     (1) 
with the following boundary conditions 
 

𝐿𝐿(0, 𝑡𝑡) = 𝐿𝐿(𝑙𝑙, 𝑡𝑡) = 0, 𝑡𝑡 ∈ [0,𝑇𝑇],                                                (2) 
 

𝐿𝐿(𝑥𝑥, 0) = 𝐿𝐿(𝑥𝑥,𝑇𝑇), 𝑥𝑥 ∈ [0, 𝑙𝑙],                                                      (3) 
 

𝐿𝐿𝑡𝑡(𝑥𝑥, 0) = 𝐿𝐿𝑡𝑡(𝑥𝑥,𝑇𝑇), 𝑥𝑥 ∈ [0, 𝑙𝑙].                                                   (4) 
 

Additionally, we suppose that 𝑎𝑎 is a positive constant, 𝛽𝛽 is a constant and 
 

𝛼𝛼(𝑧𝑧) ≥ 0 ∀𝑧𝑧 ∈ Ω.                                                                        (5) 
 

An original finite element method for solving hyperbolic boundary value problems is obtained. A 
one-dimensional linear telegraph equation with periodic boundary conditions is chosen for a model 
problem. Full space-time discretizations are used for solving the problem of interest. Different iterative 
methods are considered for solving the system of the finite element equations arising from the 
discretizations. A multigrid algorithm in the case of a singular system of finite element equations is 
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described. Numerical simulations of the weak solution are presented. The major contribution of this 
paper is a completely new weak formulation of the original problem. This approach for obtaining the 
weak problem is not restricted only to the telegraph equation. It can be applied to other hyperbolic 
problems. The proposed theory is supported by numerical simulations. The approximate asymptotic rate 
of convergence (ARC) is calculated.  

Further, the paper is organized as follows. An original weak form of the linear telegraph equation 
with periodic boundary conditions is obtained in Section 2. A finite element method for solving the 
strong problem is described in Section 3. Subsection 3.1 is devoted to finite element discretizations. 
Iterative solution methods are included in Subsection 3.2. A multigrid algorithm for solving the system 
of the finite element equations is described in pseudocode in the same subsection. Numerical simulations 
are discussed in Section 4. The paper ends with some concluding remarks. 

2.  A weak form of the problem of interest   
Let  
 

�̂�𝛺  = {𝑧𝑧(𝑥𝑥, 𝑡𝑡) | 0 < 𝑥𝑥 < 𝜋𝜋, 0 < 𝑡𝑡 < 2𝜋𝜋}. 
 

Kim [15] has considered the nonlinear telegraph equation 
 

𝑢𝑢𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 + 𝛽𝛽𝑢𝑢𝑡𝑡 + sign(𝑢𝑢)|𝑢𝑢|𝑝𝑝 = 𝑓𝑓(𝑧𝑧) in �̂�𝛺, 𝛽𝛽 ≠ 0  and  𝑝𝑝 > 0                       (6) 
 

with superlinear growth. The equation (6) is provided with the following boundary conditions 
 

𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(𝜋𝜋, 𝑡𝑡) = 0, 𝑡𝑡 ∈ [0,2𝜋𝜋],                                                   (7) 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢(𝑥𝑥, 2𝜋𝜋), 𝑥𝑥 ∈ [0,𝜋𝜋],                                                        (8) 
 

𝑢𝑢𝑡𝑡(𝑥𝑥, 0) = 𝑢𝑢𝑡𝑡(𝑥𝑥, 2𝜋𝜋), 𝑥𝑥 ∈ [0,𝜋𝜋].                                                     (9) 
 

Kim has proved in [15] that the problem (6) with the boundary conditions (7-9) has a weak solution for 
all 𝑓𝑓 ∈ 𝐿𝐿2(Ω). The latter means that the problem (1-5) is well-posed having in mind that it can be 
obtained from (6-9) by 𝑝𝑝 = 1 and Ω = ℱ(Ω̂), where ℱ is an affine transformation. 

The application of the finite element method for solving a boundary value problem requires a weak 
formulation of the original problem. For this purpose, we define the space 

 
𝐕𝐕 =  {𝑣𝑣 ∈ 𝐻𝐻1(Ω) | 𝑣𝑣 satisfies the boundary conditions (2), (3) and (4)}. 

 
There are various weak formulations of the telegraph equation, see for instance Chen [8], Kim [15], 
Zhao et al. [35], etc. Analyzing the error in the weak solution Chen et al. [8] have essentially applied 
that 

 

(𝑣𝑣𝑡𝑡𝑡𝑡,𝑣𝑣𝑡𝑡) = 1
2
𝑑𝑑
𝑑𝑑𝑡𝑡 (𝑣𝑣𝑡𝑡 ,𝑣𝑣𝑡𝑡), 

 
where (⋅,⋅) is the 𝐿𝐿2(Ω)-scalar product. Zhao et al. [35] decrease the order of the equation by the 
substitution 𝑢𝑢 = 𝑣𝑣𝑡𝑡 . Thus they present the weak formulation by a system of equations depending on both 
variables 𝑢𝑢 and 𝑣𝑣. 

Here we use another way to construct the weak formulation. By multiplying both sides of (1) with 
𝑣𝑣 ∈ 𝐕𝐕 and integrating by parts we obtain: 

 
(𝑢𝑢𝑡𝑡𝑡𝑡 ,𝑣𝑣) − (𝑎𝑎𝑢𝑢𝑥𝑥𝑥𝑥,𝑣𝑣) + (𝛽𝛽 𝑢𝑢𝑡𝑡 ,𝑣𝑣) + (𝛼𝛼 𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 
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((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡𝑡𝑡 ,𝑣𝑣) − (𝑎𝑎(𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑡𝑡𝑡𝑡),𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 
((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡𝑡𝑡,𝑣𝑣) − (𝑎𝑎∆𝑢𝑢, 𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 
−((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡,𝑣𝑣𝑡𝑡) + (𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡 ,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 

(𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) + 2 (𝛽𝛽2 𝑢𝑢𝑡𝑡 ,𝑣𝑣) = ((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡,𝑣𝑣𝑡𝑡) + (𝑓𝑓, 𝑣𝑣), 
 

(𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = ((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡, 𝑣𝑣𝑡𝑡) + 𝛽𝛽
2 ((𝑢𝑢, 𝑣𝑣𝑡𝑡) − (𝑢𝑢𝑡𝑡, 𝑣𝑣)) + (𝑓𝑓, 𝑣𝑣). 

 
We define the following bilinear forms: 

 

𝑎𝑎(𝑢𝑢, 𝑣𝑣) = ∫  (𝑎𝑎∇𝑢𝑢 ⋅ ∇𝑣𝑣 + 𝛼𝛼𝑢𝑢𝑣𝑣)
Ω

𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
 

𝑏𝑏(𝑢𝑢, 𝑣𝑣) = (1 + 𝑎𝑎)∫𝑢𝑢𝑡𝑡𝑣𝑣𝑡𝑡
Ω

 𝑑𝑑𝑑𝑑, 
 

𝑐𝑐(𝑢𝑢, 𝑣𝑣) = ∫ 𝛽𝛽
2Ω

(𝑢𝑢𝑣𝑣𝑡𝑡 − 𝑢𝑢𝑡𝑡𝑣𝑣)𝑑𝑑𝑑𝑑. 
 

The bilinear form 𝑎𝑎(𝑢𝑢, 𝑣𝑣) is elliptic and symmetric. The bilinear forms 𝑏𝑏(𝑢𝑢, 𝑣𝑣) and 𝑐𝑐(𝑢𝑢, 𝑣𝑣) are 
symmetric and skew-symmetric correspondingly. The ellipticity of the bilinear form 𝑏𝑏(𝑢𝑢, 𝑣𝑣) is not 
guaranteed. The problem 

 

𝑊𝑊 ∶  { Find 𝑢𝑢 ∈ 𝐕𝐕 such that
 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝑏𝑏(𝑢𝑢, 𝑣𝑣) + 𝑐𝑐(𝑢𝑢, 𝑣𝑣) + (𝑓𝑓, 𝑣𝑣)   ∀𝑣𝑣 ∈ 𝐕𝐕. 

 
is a weak formulation of the boundary value problem (1-5). 

 
Remark 1 The weak problem (𝑊𝑊) can be successfully obtained with variable coefficients 𝑎𝑎(𝑑𝑑) and 𝛽𝛽(𝑑𝑑) 
if 𝑎𝑎,𝛽𝛽 ∈ 𝐕𝐕. 

3.  A finite element solution method  
3.1 Finite element discretizations  
Let 𝜏𝜏𝑘𝑘   𝑘𝑘 = 0,1,2, …  be a sequence of successive hierarchical finite element triangulations of the space-
time domain Ω and 𝐕𝐕𝑘𝑘 ⊂ 𝐕𝐕 be the corresponding finite element space. The space 𝐕𝐕𝑘𝑘 is spanned by the 
nodal basis functions 𝜑𝜑𝑖𝑖𝑘𝑘(𝑑𝑑), 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑘𝑘 = dim 𝐕𝐕𝑘𝑘 . The set 𝒩𝒩𝑘𝑘 is composed of all nodes of 𝜏𝜏𝑘𝑘 
belonging to Ω ∪ Γ0 ∪ Γ𝑇𝑇 . For the sake of simplicity, we restrict ourself to the simplicial Lagrangian 
finite elements and we suppose that the initial triangulation 𝜏𝜏0 is a uniform partition of the domain Ω. 

A discrete problem (𝑊𝑊𝑘𝑘) associated with the weak formulation (𝑊𝑊) looks as follows 
 

𝑊𝑊𝑘𝑘 ∶  { Find 𝑢𝑢𝑘𝑘 ∈ 𝐕𝐕𝒌𝒌 so that
 𝑎𝑎(𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘) = 𝑏𝑏(𝑢𝑢𝑘𝑘 ,𝑣𝑣𝑘𝑘) + 𝑐𝑐(𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘) + (𝑓𝑓, 𝑣𝑣𝑘𝑘)  ∀𝑣𝑣𝑘𝑘 ∈ 𝐕𝐕𝑘𝑘 . 

 
We search for a finite element solution 
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𝑢𝑢𝑘𝑘(𝑧𝑧) = 𝑈𝑈𝑘𝑘 ⋅ Φ𝑘𝑘(𝑧𝑧) = ∑𝑈𝑈𝑘𝑘,𝑖𝑖𝜑𝜑𝑖𝑖𝑘𝑘(𝑧𝑧)
𝑛𝑛𝑘𝑘

𝑖𝑖=1
∈ 𝐕𝐕𝑘𝑘 , 

 
where 𝑈𝑈𝑘𝑘,𝑖𝑖 =  𝑢𝑢𝑘𝑘(𝑎𝑎𝑖𝑖) and Φk(𝑧𝑧) is the vector of nodal basis functions. 

Let  
 

𝐼𝐼𝑘𝑘 ∶  𝐕𝐕 → 𝐕𝐕𝑘𝑘 
 

be the Lagrangian nodal interpolation operator and 
 

𝐼𝐼𝑘𝑘 ∶  𝐕𝐕𝑘𝑘−1 → 𝐕𝐕𝑘𝑘 
 

defined by 𝐼𝐼𝑘𝑘 ∶  𝑣𝑣𝑘𝑘−1 → 𝐼𝐼𝑘𝑘𝑣𝑣𝑘𝑘−1 be the intergrid transfer operator from the finite element space  𝐕𝐕𝑘𝑘−1 to 
𝐕𝐕𝑘𝑘. The operator 𝑃𝑃𝑘𝑘 maps the finite element space 𝐕𝐕𝑘𝑘 onto 𝐑𝐑𝑛𝑛𝑘𝑘 by 𝑃𝑃𝑘𝑘 ∶ 𝑣𝑣𝑘𝑘 → 𝑉𝑉𝑘𝑘 . We convert the discrete 
problem (𝑊𝑊𝑘𝑘) in a matrix form 

 

�̂�𝑊𝑘𝑘 ∶  {Find a 𝑛𝑛𝑘𝑘 − dimensional vector 𝑈𝑈𝑘𝑘 so that
 𝐴𝐴𝑘𝑘𝑈𝑈𝑘𝑘 = 𝐵𝐵𝑘𝑘𝑈𝑈𝑘𝑘 + 𝐶𝐶𝑘𝑘𝑈𝑈𝑘𝑘 + 𝐹𝐹𝑘𝑘 .  

 
in order to implement the method. The matrices in (�̂�𝑊𝑘𝑘) are defined by: 

𝐴𝐴𝑘𝑘 = 𝑎𝑎�̂�𝐴𝑘𝑘 + �̂�𝑀𝑘𝑘;  
�̂�𝐴𝑘𝑘 is the stiffness matrix; 
�̂�𝑀𝑘𝑘 = {∫ 𝛼𝛼(𝑧𝑧)𝜑𝜑𝑖𝑖𝑘𝑘𝜑𝜑𝑗𝑗𝑘𝑘Ω 𝑑𝑑𝑧𝑧, 1 ≤  𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛𝑘𝑘},   𝑑𝑑𝑧𝑧 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;  
𝐵𝐵𝑘𝑘 = (1 + 𝑎𝑎)�̂�𝐵𝑘𝑘;  
𝐶𝐶𝑘𝑘 = 𝛽𝛽

2 �̂�𝐶𝑘𝑘;  

�̂�𝐵𝑘𝑘 = {∫ 𝜕𝜕𝜑𝜑𝑖𝑖
𝑘𝑘

𝜕𝜕𝜕𝜕
𝜕𝜕𝜑𝜑𝑗𝑗

𝑘𝑘

𝜕𝜕𝜕𝜕Ω 𝑑𝑑𝑧𝑧, 1 ≤  𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛𝑘𝑘} ;  

�̂�𝐶𝑘𝑘 = {∫ (𝜑𝜑𝑖𝑖𝑘𝑘
𝜕𝜕𝜑𝜑𝑗𝑗

𝑘𝑘

𝜕𝜕𝜕𝜕 − 𝜑𝜑𝑗𝑗𝑘𝑘
𝜕𝜕𝜑𝜑𝑖𝑖

𝑘𝑘

𝜕𝜕𝜕𝜕 )Ω 𝑑𝑑𝑧𝑧, 1 ≤  𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛𝑘𝑘} ;  
𝐹𝐹𝑘𝑘 = {∫ 𝑓𝑓𝜑𝜑𝑖𝑖𝑘𝑘Ω 𝑑𝑑𝑧𝑧, 1 ≤  𝑖𝑖 ≤ 𝑛𝑛𝑘𝑘}.  

The matrix 𝐴𝐴𝑘𝑘 is symmetric and positive definite due to (5). The matrices 𝐵𝐵𝑘𝑘 and 𝐶𝐶𝑘𝑘 are symmetric and 
skew-symmetric, which is essential from computational point of view. 
 
3.2 Iterative solution methods 
This section deals with the linear system 

 
𝐷𝐷𝑘𝑘𝑈𝑈𝑘𝑘 = 𝐹𝐹𝑘𝑘 , 𝐷𝐷𝑘𝑘 = 𝐴𝐴𝑘𝑘 − (𝐵𝐵𝑘𝑘 + 𝐶𝐶𝑘𝑘)                                             (10) 

 
arising from the problem (𝑊𝑊𝑘𝑘). First, we consider the case of positive definite matrix 𝐷𝐷𝑘𝑘. Following 
Ghoussoub and Moradifam [11], we improve the system (10) in two stages. 

 
First, we multiply both sides of (10) by 𝐷𝐷𝑘𝑘𝑇𝑇 and obtain 
 

�̂�𝑄𝑘𝑘𝑈𝑈𝑘𝑘 = �̂�𝐸𝑘𝑘 ,                                                                    (11) 
Where �̂�𝑄𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇𝐷𝐷𝑘𝑘 and �̂�𝐸𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇𝐹𝐹𝑘𝑘. 

The matrix �̂�𝐷𝑘𝑘 = 𝐴𝐴𝑘𝑘 − 𝐵𝐵𝑘𝑘 is a symmetric part of 𝐷𝐷𝑘𝑘. If  �̂�𝐷𝑘𝑘 is invertible, we continue with the second 
stage. Multiplying both sides of (11) by the preconditioner 𝐷𝐷𝑘𝑘𝑇𝑇�̂�𝐷𝑘𝑘−1,  we obtain 

 

 
 
 
 
 
 

 
((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡𝑡𝑡 ,𝑣𝑣) − (𝑎𝑎(𝑢𝑢𝑥𝑥𝑥𝑥 + 𝑢𝑢𝑡𝑡𝑡𝑡),𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 
((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡𝑡𝑡,𝑣𝑣) − (𝑎𝑎∆𝑢𝑢, 𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 
−((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡,𝑣𝑣𝑡𝑡) + (𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛽𝛽𝑢𝑢𝑡𝑡 ,𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = (𝑓𝑓, 𝑣𝑣), 

 

(𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) + 2 (𝛽𝛽2 𝑢𝑢𝑡𝑡 ,𝑣𝑣) = ((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡,𝑣𝑣𝑡𝑡) + (𝑓𝑓, 𝑣𝑣), 
 

(𝑎𝑎∇𝑢𝑢,∇𝑣𝑣) + (𝛼𝛼𝑢𝑢, 𝑣𝑣) = ((1 + 𝑎𝑎)𝑢𝑢𝑡𝑡, 𝑣𝑣𝑡𝑡) + 𝛽𝛽
2 ((𝑢𝑢, 𝑣𝑣𝑡𝑡)− (𝑢𝑢𝑡𝑡, 𝑣𝑣)) + (𝑓𝑓, 𝑣𝑣). 

 
We define the following bilinear forms: 

 

𝑎𝑎(𝑢𝑢, 𝑣𝑣) = ∫  (𝑎𝑎∇𝑢𝑢 ⋅ ∇𝑣𝑣 + 𝛼𝛼𝑢𝑢𝑣𝑣)
Ω

𝑑𝑑𝑑𝑑, 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 
 

𝑏𝑏(𝑢𝑢, 𝑣𝑣) = (1 + 𝑎𝑎)∫𝑢𝑢𝑡𝑡𝑣𝑣𝑡𝑡
Ω

 𝑑𝑑𝑑𝑑, 
 

𝑐𝑐(𝑢𝑢, 𝑣𝑣) = ∫ 𝛽𝛽
2Ω

(𝑢𝑢𝑣𝑣𝑡𝑡 − 𝑢𝑢𝑡𝑡𝑣𝑣)𝑑𝑑𝑑𝑑. 
 

The bilinear form 𝑎𝑎(𝑢𝑢, 𝑣𝑣) is elliptic and symmetric. The bilinear forms 𝑏𝑏(𝑢𝑢, 𝑣𝑣) and 𝑐𝑐(𝑢𝑢, 𝑣𝑣) are 
symmetric and skew-symmetric correspondingly. The ellipticity of the bilinear form 𝑏𝑏(𝑢𝑢, 𝑣𝑣) is not 
guaranteed. The problem 

 

𝑊𝑊 ∶  { Find 𝑢𝑢 ∈ 𝐕𝐕 such that
 𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝑏𝑏(𝑢𝑢, 𝑣𝑣) + 𝑐𝑐(𝑢𝑢, 𝑣𝑣) + (𝑓𝑓, 𝑣𝑣)   ∀𝑣𝑣 ∈ 𝐕𝐕. 

 
is a weak formulation of the boundary value problem (1-5). 

 
Remark 1 The weak problem (𝑊𝑊) can be successfully obtained with variable coefficients 𝑎𝑎(𝑑𝑑) and 𝛽𝛽(𝑑𝑑) 
if 𝑎𝑎,𝛽𝛽 ∈ 𝐕𝐕. 

3.  A finite element solution method  
3.1 Finite element discretizations  
Let 𝜏𝜏𝑘𝑘   𝑘𝑘 = 0,1,2, …  be a sequence of successive hierarchical finite element triangulations of the space-
time domain Ω and 𝐕𝐕𝑘𝑘 ⊂ 𝐕𝐕 be the corresponding finite element space. The space 𝐕𝐕𝑘𝑘 is spanned by the 
nodal basis functions 𝜑𝜑𝑖𝑖𝑘𝑘(𝑑𝑑), 𝑖𝑖 = 1,2, . . . ,𝑛𝑛𝑘𝑘 = dim 𝐕𝐕𝑘𝑘 . The set 𝒩𝒩𝑘𝑘 is composed of all nodes of 𝜏𝜏𝑘𝑘 
belonging to Ω ∪ Γ0 ∪ Γ𝑇𝑇 . For the sake of simplicity, we restrict ourself to the simplicial Lagrangian 
finite elements and we suppose that the initial triangulation 𝜏𝜏0 is a uniform partition of the domain Ω. 

A discrete problem (𝑊𝑊𝑘𝑘) associated with the weak formulation (𝑊𝑊) looks as follows 
 

𝑊𝑊𝑘𝑘 ∶  { Find 𝑢𝑢𝑘𝑘 ∈ 𝐕𝐕𝒌𝒌 so that
 𝑎𝑎(𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘) = 𝑏𝑏(𝑢𝑢𝑘𝑘 ,𝑣𝑣𝑘𝑘) + 𝑐𝑐(𝑢𝑢𝑘𝑘,𝑣𝑣𝑘𝑘) + (𝑓𝑓, 𝑣𝑣𝑘𝑘)  ∀𝑣𝑣𝑘𝑘 ∈ 𝐕𝐕𝑘𝑘 . 

 
We search for a finite element solution 
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𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘 = 𝐸𝐸𝑘𝑘 ,                                                                    (12) 
 
where 

𝑄𝑄𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇�̂�𝐷𝑘𝑘−1�̂�𝑄𝑘𝑘 and 𝐸𝐸𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇�̂�𝐷𝑘𝑘−1�̂�𝐸𝑘𝑘. 
Thus, we continue solving (12) instead of (10). The Fréchet derivatives 

 
𝐷𝐷𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘)𝑉𝑉𝑘𝑘 = 𝑈𝑈𝑘𝑘𝑄𝑄𝑘𝑘𝑉𝑉𝑘𝑘 − 𝐹𝐹𝑘𝑘𝑉𝑉𝑘𝑘 

 
and 

 
𝐷𝐷2𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘)(𝑉𝑉𝑘𝑘,𝑉𝑉𝑘𝑘) = 𝑉𝑉𝑘𝑘𝑄𝑄𝑘𝑘𝑉𝑉𝑘𝑘 

 
of the functional 

 

𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘) = 1
2𝑈𝑈𝑘𝑘𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘 − 𝐹𝐹𝑘𝑘𝑈𝑈𝑘𝑘 

 
guarantee that 𝐽𝐽𝑘𝑘 is convex with a unique stationary point 𝑈𝑈𝑘𝑘. To start a multigrid iteration, we solve the 
problem (𝑊𝑊0) in the coarsest triangulation 𝜏𝜏0  by any method. The approximate solution in the grid 𝜏𝜏𝑘𝑘 
is denoted by �̂�𝑢𝑘𝑘. Let 〈⋅,⋅〉 be the inner product in 𝐑𝐑𝑛𝑛 and 𝑆𝑆𝑘𝑘

[𝑚𝑚−1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝑈𝑈𝑘𝑘

[𝑚𝑚−1]. We apply the two-
point step size gradient method [9,28] 
 

{
 
 
 
 𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝜂𝜂𝑘𝑘𝐷𝐷𝐽𝐽𝑘𝑘 (𝑈𝑈𝑘𝑘

[𝑚𝑚]) , 𝑚𝑚 ≥ 1, 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘
[𝑚𝑚] ∈ 𝐕𝐕𝑘𝑘  

𝜂𝜂𝑘𝑘  = 𝐷𝐷𝐷𝐷𝑘𝑘(𝑈𝑈𝑘𝑘
[𝑚𝑚])𝑆𝑆𝑘𝑘

[𝑚𝑚−1]

〈𝑆𝑆𝑘𝑘
[𝑚𝑚−1],𝑆𝑆𝑘𝑘

[𝑚𝑚−1]〉
,

𝑈𝑈𝑘𝑘
[0] = 𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘�̂�𝑢𝑘𝑘−1, 𝑘𝑘 ≥ 1  

                               (13) 

 
in order to find the solution of the unconstrained minimization problem 

 
𝑀𝑀𝑘𝑘 ∶ argmin

𝑉𝑉𝑘𝑘∈𝐕𝐕𝑘𝑘
𝐽𝐽𝑘𝑘(𝑉𝑉𝑘𝑘) , 𝑃𝑃𝑘𝑘−1𝑉𝑉𝑘𝑘 ∈ 𝐕𝐕𝑘𝑘 . 

 
The BB method has been successfully applied by Todorov [32,33] for solving finite element equations 
resulting from elliptic nonlocal problems. 

Since 𝐽𝐽𝑘𝑘(𝑉𝑉𝑘𝑘) is a quadratic functional the iteration (13) becomes 
 

{
 
 

 
 𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝜂𝜂𝑘𝑘 (𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘

[𝑚𝑚] − 𝐹𝐹𝑘𝑘) , 𝑚𝑚 ≥ 1, 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘
[𝑚𝑚] ∈ 𝐕𝐕𝑘𝑘  

𝜂𝜂𝑘𝑘  = (𝑆𝑆𝑘𝑘
[𝑚𝑚−1])

𝑇𝑇
𝑄𝑄𝑘𝑘 𝑆𝑆𝑘𝑘

[𝑚𝑚−1]

〈𝑆𝑆𝑘𝑘
[𝑚𝑚−1],𝑆𝑆𝑘𝑘

[𝑚𝑚−1]〉
,

𝑈𝑈𝑘𝑘
[0] = 𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘�̂�𝑢𝑘𝑘−1, 𝑘𝑘 ≥ 1  

  .                     (14) 

 
Thus, we obtain a multigrid iterative method for solving the problem (𝑊𝑊𝑘𝑘) when the matrix 𝐷𝐷𝑘𝑘 is positive 
definite. 

Further, we suppose that the matrix 𝐷𝐷𝑘𝑘 is indefinite or singular. There are various papers [3,4,18] 
that solve the singular linear system 𝐴𝐴𝑋𝑋 = 𝐵𝐵 based on the Hermitian and skew-Hermitian splitting. But 
the authors of the most of them require the matrix 𝐴𝐴 to be positive semidefinite [7]. This requirement is 
too restrictive and cannot be satisfied in our case. Makinson and Shah [20] have proposed another 
splitting that avoids the requirement about positive semidefiniteness of the matrix 𝐴𝐴 but they have 
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imposed the condition the matrix 𝐴𝐴 to have a workable split. Unfortunately, the authors have not 
presented a practical approach for constructing an arbitrary workable split of a singular matrix. A less 
restrictive method, which is easy to implementation has been developed by Srivastava et al. [30]. 

In this paper, we solve the linear system arising from the finite element discretization by an 
extrapolated iterative method proposed by Song and Wang [29]. Let 𝑋𝑋 be a square matrix with real 
entries. We denote the spectral radius, the range space, the index and the spectrum of the matrix 𝑋𝑋 by 
𝜌𝜌(𝑋𝑋),𝑅𝑅(𝑋𝑋), Ind(𝑋𝑋) and 𝜎𝜎(𝑋𝑋). The identity matrix is denoted by 𝐼𝐼 and the Euclidean norm in 𝐑𝐑𝑛𝑛 by    
|| ⋅ ||. 

We suppose that Ind(𝐷𝐷𝑘𝑘) = 1. Then the system (10) is very suitable for solving by the extrapolated 
method [29] since 𝐴𝐴𝑘𝑘 is a symmetric and positive definite matrix. Since the problem (1-5) has at least 
one weak solution [15, Theorem 3.1] the vector 𝐹𝐹𝑘𝑘 ∈ 𝑅𝑅(𝐷𝐷𝑘𝑘). We introduce the following iterative 
scheme 

 

{
𝑈𝑈𝑘𝑘

[𝑚𝑚+1]  = 𝑌𝑌𝜉𝜉,𝑘𝑘𝑈𝑈𝑘𝑘
[𝑚𝑚]  + 𝜉𝜉𝐺𝐺𝑘𝑘 ,

𝑌𝑌𝜉𝜉,𝑘𝑘 = (1 − 𝜉𝜉)𝐼𝐼 + 𝜉𝜉𝑌𝑌𝑘𝑘 ,
𝑈𝑈𝑘𝑘

[0] = 𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘�̂�𝑢𝑘𝑘−1,   𝑘𝑘 ≥ 1
                                                          (15) 

 
in order to approximate the solution 𝑢𝑢𝑘𝑘 of the problem (𝑊𝑊𝑘𝑘). The matrices 

 
𝑌𝑌𝑘𝑘 = 𝐴𝐴𝑘𝑘−1(𝐵𝐵𝑘𝑘 + 𝐶𝐶𝑘𝑘) and 𝐺𝐺𝑘𝑘 = 𝐴𝐴𝑘𝑘−1𝐹𝐹𝑘𝑘 

 
are obtained from the splitting 𝐷𝐷𝑘𝑘 = 𝐴𝐴𝑘𝑘 − (𝐵𝐵𝑘𝑘 + 𝐶𝐶𝑘𝑘). To start the iteration (15), we solve the problem 
(𝑊𝑊0) in the coarsest triangulation 𝜏𝜏0 by any method. We denote the approximate solution of (15) in the 
grid 𝜏𝜏𝑘𝑘 by �̂�𝑢𝑘𝑘. 

The semiconvergence of the iterative method (15) is guaranteed by the next theorem. 
 
Theorem 1 Let  

 

Λ(𝜆𝜆) = 2(1 − Re𝜆𝜆)
1 − 2Re𝜆𝜆 + |𝜆𝜆|2 , 𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌), �̂�𝜎(𝑌𝑌) = 𝜎𝜎(𝑌𝑌) ∖ {1} 

 
and  

𝛾𝛾𝑘𝑘 = min
𝜆𝜆∈�̂�𝜎(𝑌𝑌𝑘𝑘)

Λ(𝜆𝜆),    𝛾𝛾𝑘𝑘 = max
𝜆𝜆∈�̂�𝜎(𝑌𝑌𝑘𝑘)

Λ(𝜆𝜆) 
 
for an arbitrary square matrix 𝑌𝑌. Additionally, we assume that Ind(𝐷𝐷𝑘𝑘) = 1. Then the iterative solution 
method (15) is semiconvergent when one of the conditions: 
 

0 < 𝜉𝜉 < 𝛾𝛾𝑘𝑘 if Re𝜆𝜆 < 1,∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘) or 𝜌𝜌(𝑌𝑌𝑘𝑘) = 1;  
 

𝛾𝛾𝑘𝑘 < 𝜉𝜉 < 0 if Re𝜆𝜆 > 1,∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘)  
 

is true. 
Proof. The proof is a direct consequence of [29, Theorem 2.2].∎  
 
Corollary 1 Under the conditions of Theorem 1, the convergence  
 

{𝑢𝑢𝑘𝑘
[𝑚𝑚] ⇀ 𝑢𝑢𝑘𝑘 
𝑚𝑚 → ∞

 

 

 
 
 
 
 
 

𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘 = 𝐸𝐸𝑘𝑘 ,                                                                    (12) 
 
where 

𝑄𝑄𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇�̂�𝐷𝑘𝑘−1�̂�𝑄𝑘𝑘 and 𝐸𝐸𝑘𝑘 = 𝐷𝐷𝑘𝑘𝑇𝑇�̂�𝐷𝑘𝑘−1�̂�𝐸𝑘𝑘. 
Thus, we continue solving (12) instead of (10). The Fréchet derivatives 

 
𝐷𝐷𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘)𝑉𝑉𝑘𝑘 = 𝑈𝑈𝑘𝑘𝑄𝑄𝑘𝑘𝑉𝑉𝑘𝑘 − 𝐹𝐹𝑘𝑘𝑉𝑉𝑘𝑘 

 
and 

 
𝐷𝐷2𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘)(𝑉𝑉𝑘𝑘,𝑉𝑉𝑘𝑘) = 𝑉𝑉𝑘𝑘𝑄𝑄𝑘𝑘𝑉𝑉𝑘𝑘 

 
of the functional 

 

𝐽𝐽𝑘𝑘(𝑈𝑈𝑘𝑘) = 1
2𝑈𝑈𝑘𝑘𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘 − 𝐹𝐹𝑘𝑘𝑈𝑈𝑘𝑘 

 
guarantee that 𝐽𝐽𝑘𝑘 is convex with a unique stationary point 𝑈𝑈𝑘𝑘. To start a multigrid iteration, we solve the 
problem (𝑊𝑊0) in the coarsest triangulation 𝜏𝜏0  by any method. The approximate solution in the grid 𝜏𝜏𝑘𝑘 
is denoted by �̂�𝑢𝑘𝑘. Let 〈⋅,⋅〉 be the inner product in 𝐑𝐑𝑛𝑛 and 𝑆𝑆𝑘𝑘

[𝑚𝑚−1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝑈𝑈𝑘𝑘

[𝑚𝑚−1]. We apply the two-
point step size gradient method [9,28] 
 

{
 
 
 
 𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝜂𝜂𝑘𝑘𝐷𝐷𝐽𝐽𝑘𝑘 (𝑈𝑈𝑘𝑘

[𝑚𝑚]) , 𝑚𝑚 ≥ 1, 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘
[𝑚𝑚] ∈ 𝐕𝐕𝑘𝑘  

𝜂𝜂𝑘𝑘  = 𝐷𝐷𝐷𝐷𝑘𝑘(𝑈𝑈𝑘𝑘
[𝑚𝑚])𝑆𝑆𝑘𝑘

[𝑚𝑚−1]

〈𝑆𝑆𝑘𝑘
[𝑚𝑚−1],𝑆𝑆𝑘𝑘

[𝑚𝑚−1]〉
,

𝑈𝑈𝑘𝑘
[0] = 𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘�̂�𝑢𝑘𝑘−1, 𝑘𝑘 ≥ 1  

                               (13) 

 
in order to find the solution of the unconstrained minimization problem 

 
𝑀𝑀𝑘𝑘 ∶ argmin

𝑉𝑉𝑘𝑘∈𝐕𝐕𝑘𝑘
𝐽𝐽𝑘𝑘(𝑉𝑉𝑘𝑘) , 𝑃𝑃𝑘𝑘−1𝑉𝑉𝑘𝑘 ∈ 𝐕𝐕𝑘𝑘 . 

 
The BB method has been successfully applied by Todorov [32,33] for solving finite element equations 
resulting from elliptic nonlocal problems. 

Since 𝐽𝐽𝑘𝑘(𝑉𝑉𝑘𝑘) is a quadratic functional the iteration (13) becomes 
 

{
 
 

 
 𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑈𝑈𝑘𝑘
[𝑚𝑚] − 𝜂𝜂𝑘𝑘 (𝑄𝑄𝑘𝑘𝑈𝑈𝑘𝑘

[𝑚𝑚] − 𝐹𝐹𝑘𝑘) , 𝑚𝑚 ≥ 1, 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘
[𝑚𝑚] ∈ 𝐕𝐕𝑘𝑘  

𝜂𝜂𝑘𝑘  = (𝑆𝑆𝑘𝑘
[𝑚𝑚−1])

𝑇𝑇
𝑄𝑄𝑘𝑘 𝑆𝑆𝑘𝑘

[𝑚𝑚−1]

〈𝑆𝑆𝑘𝑘
[𝑚𝑚−1],𝑆𝑆𝑘𝑘

[𝑚𝑚−1]〉
,

𝑈𝑈𝑘𝑘
[0] = 𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘�̂�𝑢𝑘𝑘−1, 𝑘𝑘 ≥ 1  

  .                     (14) 

 
Thus, we obtain a multigrid iterative method for solving the problem (𝑊𝑊𝑘𝑘) when the matrix 𝐷𝐷𝑘𝑘 is positive 
definite. 

Further, we suppose that the matrix 𝐷𝐷𝑘𝑘 is indefinite or singular. There are various papers [3,4,18] 
that solve the singular linear system 𝐴𝐴𝑋𝑋 = 𝐵𝐵 based on the Hermitian and skew-Hermitian splitting. But 
the authors of the most of them require the matrix 𝐴𝐴 to be positive semidefinite [7]. This requirement is 
too restrictive and cannot be satisfied in our case. Makinson and Shah [20] have proposed another 
splitting that avoids the requirement about positive semidefiniteness of the matrix 𝐴𝐴 but they have 
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holds and 𝑢𝑢𝑘𝑘
[∞]  is independent of the initial guess 𝑢𝑢𝑘𝑘

[0]. 
Proof. Theorem 1 assures the semiconvergence of the sequence {𝑈𝑈𝑘𝑘

[𝑚𝑚]}. Additionally, 𝑈𝑈𝑘𝑘
[∞] is 

independent of the initial guess. It remains to approach 𝑚𝑚 to infinity in (15) with 𝑢𝑢𝑘𝑘
[𝑚𝑚] = 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘

[𝑚𝑚] in 
order to obtain that 𝑢𝑢𝑘𝑘

[∞] is a solution of (𝑊𝑊𝑘𝑘). ∎ 
The essence of the method is presented in Algorithm 1. For the sake of simplicity this algorithm is 

constructed by assuming that the matrix 𝐷𝐷𝑘𝑘 is singular. 
 

Algorithm 1 Multigrid algorithm for solving the telegraph equation 
1:   % The initial guesses can be chosen in different ways. 
2:   In the coarsest grid, find a solution �̂�𝑈0 of the problem (�̂�𝑊𝑘𝑘) by any method and go to line 20:,  

   or continue with the next line; 
3:   compile 𝐴𝐴0, 𝐵𝐵0, 𝐶𝐶0, 𝐹𝐹0; 
4:   if (Re𝜆𝜆 < 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌0)) 𝐨𝐨𝐨𝐨 ( 𝜌𝜌(𝑌𝑌0) = 1) then 
5:     choose 𝜉𝜉 so that  0 < 𝜉𝜉 < 𝛾𝛾0 
6:   end if; 
7:   if (Re𝜆𝜆 > 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌0)) then 
8:     choose 𝜉𝜉 so that  𝛾𝛾0 < 𝜉𝜉 < 0 
9:   end if; 
10: 𝐺𝐺0 = 𝐴𝐴0−1𝐹𝐹0; 
11: 𝑌𝑌0 = 𝐴𝐴0−1(𝐵𝐵0 + 𝐶𝐶0); 
12: 𝑚𝑚 = 0; 
13: with zero initial guess 𝑈𝑈0

[0] 
14: repeat 
15:    𝑌𝑌𝜉𝜉,0 = (1 − 𝜉𝜉)𝐼𝐼 + 𝜉𝜉𝑌𝑌0; 
16:    𝑈𝑈0

[𝑚𝑚+1] = 𝑌𝑌𝜉𝜉,0𝑈𝑈0
[𝑚𝑚]  + 𝜉𝜉𝐺𝐺0; 

17:    𝑚𝑚 = 𝑚𝑚 + 1 
18: until ‖𝑈𝑈0

[𝑚𝑚+1] − 𝑈𝑈0
[𝑚𝑚]‖ < 𝜀𝜀; 

19: �̂�𝑈0
[𝑚𝑚] = 𝑈𝑈0

[𝑚𝑚+1]; 
20: for 𝑘𝑘 = 1 𝐭𝐭𝐨𝐨 𝑛𝑛 
21:    𝑈𝑈𝑘𝑘

[0] = �̂�𝑈𝑘𝑘−1;  
22:    compile 𝐴𝐴𝑘𝑘 ,𝐵𝐵𝑘𝑘 ,𝐶𝐶𝑘𝑘,𝐹𝐹𝑘𝑘; 
23:    𝐺𝐺𝑘𝑘 = 𝐴𝐴𝑘𝑘−1𝐹𝐹𝑘𝑘; 
24:    𝑌𝑌𝑘𝑘 = 𝐴𝐴𝑘𝑘−1(𝐵𝐵𝑘𝑘 + 𝐶𝐶𝑘𝑘); 
25:    if (Re𝜆𝜆 < 1,∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘)) 𝐨𝐨𝐨𝐨 𝜌𝜌(𝑌𝑌𝑘𝑘) = 1 then 
26:      choose 𝜉𝜉 so that  0 < 𝜉𝜉 < 𝛾𝛾𝑘𝑘; 
27:    end if; 
28:   if (Re𝜆𝜆 > 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘)) 
29:     choose 𝜉𝜉 so that  𝛾𝛾𝑘𝑘 < 𝜉𝜉 < 0 
30:   end if; 
31:   𝑚𝑚 = 0; 
32:   repeat 
33:      𝑌𝑌𝜉𝜉,𝑘𝑘 = (1 − 𝜉𝜉)𝐼𝐼 + 𝜉𝜉𝑌𝑌𝑘𝑘; 
34:      𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑌𝑌𝜉𝜉,𝑘𝑘𝑈𝑈𝑘𝑘
[𝑚𝑚]  + 𝜉𝜉𝐺𝐺𝑘𝑘; 

35:      𝑚𝑚 = 𝑚𝑚 + 1 
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36:   until ‖𝑈𝑈𝑘𝑘
[𝑚𝑚+1] − 𝑈𝑈𝑘𝑘

[𝑚𝑚]‖ < 𝜀𝜀; 
37:   𝑈𝑈𝑘𝑘 = 𝑈𝑈𝑘𝑘

[𝑚𝑚+1] 
38: end for 
39: end. 
 
Remark 2 If 𝐴𝐴𝑘𝑘 > 𝐵𝐵𝑘𝑘, 𝑘𝑘 ∈ 𝐍𝐍 the problem (�̂�𝑊𝑘𝑘) becomes stiffness dominated since (𝑉𝑉𝑘𝑘)𝑇𝑇𝐶𝐶𝑘𝑘𝑉𝑉𝑘𝑘 = 0 for 
all 𝑛𝑛𝑘𝑘-dimensional column vector 𝑉𝑉𝑘𝑘. Therefore, it can be solved by the fixed-point iteration method as 
well. 

4.  Numerical simulations 
Let  

𝑒𝑒𝑘𝑘 = ‖𝑃𝑃𝑘𝑘𝐼𝐼𝑘𝑘𝑢𝑢 − 𝑃𝑃𝑘𝑘�̂�𝑢𝑘𝑘‖
√𝑛𝑛𝑘𝑘

 

 
be the RMS error in the approximate solution �̂�𝑢𝑘𝑘 obtained by the triangulation 𝜏𝜏𝑘𝑘 . We use the 
approximate ARC [1,17] 

 

𝜇𝜇𝑘𝑘 = 1
ln 2 ln 𝑒𝑒𝑘𝑘−1𝑒𝑒𝑘𝑘

 

 
in order to illustrate the convergence of the multigrid approximations. 

In this section we approximately solve the linear telegraph equation 
 

𝑢𝑢𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑥𝑥𝑥𝑥 + 2𝑢𝑢𝑡𝑡 + 7
4 𝜋𝜋

2𝑢𝑢 = 𝑓𝑓, in Ω                                       (16) 
 

provided with the periodic boundary conditions: 
 

𝑢𝑢(0, 𝑡𝑡) = 𝑢𝑢(1, 𝑡𝑡) = 0, 𝑡𝑡 ∈ [0,1],                                            (17) 
 

𝑢𝑢(𝑥𝑥, 0) = 𝑢𝑢(𝑥𝑥, 1), 𝑥𝑥 ∈ [0,1],                                                  (18) 
 

𝑢𝑢𝑡𝑡(𝑥𝑥, 0) = 𝑢𝑢𝑡𝑡(𝑥𝑥, 1), 𝑥𝑥 ∈ [0,1],                                               (19) 
 
where Ω is the unit square and  
 

𝑓𝑓(𝑧𝑧) = 𝜋𝜋 (3 sin(2𝜋𝜋𝑡𝑡) sin 3𝜋𝜋𝑥𝑥
2 + 4𝑥𝑥 cos(2𝜋𝜋𝑡𝑡) cos 3𝜋𝜋𝑥𝑥

2 ). 
 
The weak form of the problem (16)-(19) looks as follows 
 

(∇𝑢𝑢,∇𝑣𝑣) + 7
4𝜋𝜋

2(𝑢𝑢, 𝑣𝑣) = 2(𝑢𝑢𝑡𝑡 ,𝑣𝑣𝑡𝑡) + (𝑢𝑢, 𝑣𝑣𝑡𝑡) − (𝑢𝑢𝑡𝑡 ,𝑣𝑣) + (𝑓𝑓, 𝑣𝑣). 
 
The problem (20) is solved by means of 10-node cubic triangular finite elements. We uniformly 

divide Ω into 18 right isosceles triangles. By unifying them we obtain the coarsest triangulation 𝜏𝜏0. The 
division process is continued by a refinement strategy [32] in order to obtain a sequence of hierarchical 
triangulations containing 18, 162, 1458, etc. finite elements. The matrices 𝐷𝐷𝑘𝑘 and �̂�𝐷𝑘𝑘 are positively 
defined and invertible, respectively. This is why we apply the preconditioned iterative method (14) in 
order to solve the problem (16)-(19). Following Raydan [28] and Todorov [32], we establish that the 

 
 
 
 
 
 

holds and 𝑢𝑢𝑘𝑘
[∞]  is independent of the initial guess 𝑢𝑢𝑘𝑘

[0]. 
Proof. Theorem 1 assures the semiconvergence of the sequence {𝑈𝑈𝑘𝑘

[𝑚𝑚]}. Additionally, 𝑈𝑈𝑘𝑘
[∞] is 

independent of the initial guess. It remains to approach 𝑚𝑚 to infinity in (15) with 𝑢𝑢𝑘𝑘
[𝑚𝑚] = 𝑃𝑃𝑘𝑘−1𝑈𝑈𝑘𝑘

[𝑚𝑚] in 
order to obtain that 𝑢𝑢𝑘𝑘

[∞] is a solution of (𝑊𝑊𝑘𝑘). ∎ 
The essence of the method is presented in Algorithm 1. For the sake of simplicity this algorithm is 

constructed by assuming that the matrix 𝐷𝐷𝑘𝑘 is singular. 
 

Algorithm 1 Multigrid algorithm for solving the telegraph equation 
1:   % The initial guesses can be chosen in different ways. 
2:   In the coarsest grid, find a solution �̂�𝑈0 of the problem (�̂�𝑊𝑘𝑘) by any method and go to line 20:,  

   or continue with the next line; 
3:   compile 𝐴𝐴0, 𝐵𝐵0, 𝐶𝐶0, 𝐹𝐹0; 
4:   if (Re𝜆𝜆 < 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌0)) 𝐨𝐨𝐨𝐨 ( 𝜌𝜌(𝑌𝑌0) = 1) then 
5:     choose 𝜉𝜉 so that  0 < 𝜉𝜉 < 𝛾𝛾0 
6:   end if; 
7:   if (Re𝜆𝜆 > 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌0)) then 
8:     choose 𝜉𝜉 so that  𝛾𝛾0 < 𝜉𝜉 < 0 
9:   end if; 
10: 𝐺𝐺0 = 𝐴𝐴0−1𝐹𝐹0; 
11: 𝑌𝑌0 = 𝐴𝐴0−1(𝐵𝐵0 + 𝐶𝐶0); 
12: 𝑚𝑚 = 0; 
13: with zero initial guess 𝑈𝑈0

[0] 
14: repeat 
15:    𝑌𝑌𝜉𝜉,0 = (1 − 𝜉𝜉)𝐼𝐼 + 𝜉𝜉𝑌𝑌0; 
16:    𝑈𝑈0

[𝑚𝑚+1] = 𝑌𝑌𝜉𝜉,0𝑈𝑈0
[𝑚𝑚]  + 𝜉𝜉𝐺𝐺0; 

17:    𝑚𝑚 = 𝑚𝑚 + 1 
18: until ‖𝑈𝑈0

[𝑚𝑚+1] − 𝑈𝑈0
[𝑚𝑚]‖ < 𝜀𝜀; 

19: �̂�𝑈0
[𝑚𝑚] = 𝑈𝑈0

[𝑚𝑚+1]; 
20: for 𝑘𝑘 = 1 𝐭𝐭𝐨𝐨 𝑛𝑛 
21:    𝑈𝑈𝑘𝑘

[0] = �̂�𝑈𝑘𝑘−1;  
22:    compile 𝐴𝐴𝑘𝑘 ,𝐵𝐵𝑘𝑘 ,𝐶𝐶𝑘𝑘,𝐹𝐹𝑘𝑘; 
23:    𝐺𝐺𝑘𝑘 = 𝐴𝐴𝑘𝑘−1𝐹𝐹𝑘𝑘; 
24:    𝑌𝑌𝑘𝑘 = 𝐴𝐴𝑘𝑘−1(𝐵𝐵𝑘𝑘 + 𝐶𝐶𝑘𝑘); 
25:    if (Re𝜆𝜆 < 1,∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘)) 𝐨𝐨𝐨𝐨 𝜌𝜌(𝑌𝑌𝑘𝑘) = 1 then 
26:      choose 𝜉𝜉 so that  0 < 𝜉𝜉 < 𝛾𝛾𝑘𝑘; 
27:    end if; 
28:   if (Re𝜆𝜆 > 1, ∀𝜆𝜆 ∈ �̂�𝜎(𝑌𝑌𝑘𝑘)) 
29:     choose 𝜉𝜉 so that  𝛾𝛾𝑘𝑘 < 𝜉𝜉 < 0 
30:   end if; 
31:   𝑚𝑚 = 0; 
32:   repeat 
33:      𝑌𝑌𝜉𝜉,𝑘𝑘 = (1 − 𝜉𝜉)𝐼𝐼 + 𝜉𝜉𝑌𝑌𝑘𝑘; 
34:      𝑈𝑈𝑘𝑘

[𝑚𝑚+1] = 𝑌𝑌𝜉𝜉,𝑘𝑘𝑈𝑈𝑘𝑘
[𝑚𝑚]  + 𝜉𝜉𝐺𝐺𝑘𝑘; 

35:      𝑚𝑚 = 𝑚𝑚 + 1 
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convergence of the two-point step size gradient method (14) depends on the condition number 𝜅𝜅(�̂�𝐷𝑘𝑘). 
The smoothing of the error function 𝑅𝑅𝑘𝑘𝑢𝑢 = 𝐼𝐼𝑘𝑘(𝑢𝑢 − �̂�𝑢𝑘𝑘) is illustrated in Figures 1-2. Table 1 represents 
the error in approximate solutions and the approximate ARC. The graphs of the approximate and the 
exact solutions are presented in Figure 3. The solution �̂�𝑢0 is obtained in triangulation 𝜏𝜏0 by only 18 
cubic finite elements. Despite this both graphics in Figure 3 are indistinguishable. 

 
Table 4. The error in the approximate solutions and the approximate ARC. 

k Card(𝜏𝜏𝑘𝑘) 𝑒𝑒𝑘𝑘 𝜇𝜇𝑘𝑘 

0 18 0.00347540006294  
1 162 0.00017974078023 4.27319 
2 1458 0.00001071379797 4.06838 

 

 

 

 
Figure 1. The graph of the error function 𝑅𝑅𝑘𝑘 obtained by 
  18 finite elements left and by 162 elements right. 

 

 
Figure 2. The graph of the error function 𝑅𝑅𝑘𝑘 obtained by 1458 elements. 
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Figure 3. The graphs of the approximate solution �̂�𝑢0 left and the exact 

solution 𝑢𝑢 right. 
 

5.  Conclusion  
This paper deals with a space-time finite element method for solving the linear telegraph equation. The 
proposed method should not only be restricted to solving a telegraph equation. It can be successfully 
applied to solve other hyperbolic problems. The multigrid method for solving the problem (𝑊𝑊) is based 
on the simplicial elements. But it can be successfully used with quadrilateral elements as well. Since the 
strong problem could have more than one solution, we consider different iterative methods for solving 
the system of linear finite element equations. The case when the original problem has more than one 
solution is considered more thoroughly by describing the necessary iterative method in pseudocode. 

The numerical simulations of the RMS error indicate a quartic ARC for the cubic trial functions. Due 
to ill-conditioned linear systems of finite element equations, preconditioned techniques are used. 
Todorov [32,33] has demonstrated slight dependence on the convergence of the BB method on the initial 
guesses solving elliptic nonlocal problems. Unfortunately, the method (14) is sensible with respect to 
the initial guesses. The latter means that the initial guesses should be chosen close to the weak solution. 
That is why we need an approximate solution in the coarsest triangulation in order to start the multigrid 
algorithm. 
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