
Ultimate Execution Speed of FPGA based Edge Detection:
Parallel Addition

Dimitre Kromichev

Department of Marketing and International
Economic Relations,

University of Plovdiv, 24 Tzar Asen Street,
Plovdiv 4000, Bulgaria

dkromichev@yahoo.com

Abstract. In the ultimate execution speed domain, parallel addition is critical for all FPGA based edge detection methods
which rely on the Gaussian weighted average function as the filtering stage. With these methods, the first parameter of
ultimate execution speed - maximum operating frequency, is defined by the integer arithmetic in Gaussian filtering. The
second parameter of ultimate execution speed - minimum number of clock cycles taken to obtain accurate result, requires
that a filtered image pixel must be available at the output of Gaussian filtering stage every clock cycle, irrespective of the
size of Gaussian filter and the magnitude of its coefficients. Parallel addition has a very important role in the fulfillment
of this requirement. The paper focuses on exploring the capabilities of parallel addition in FPGA based edge detection
which uses Gaussian filtering to contribute to the goal of securing a Gaussian filtered pixel every clock cycle at the
maximum operating frequency, and the analysis of the impact of parallel addition on the organization of Gaussian
filtering computations. The obtained exploration results are based on ten Intel (Altera) FPGA families.

1. INTRODUCTION

 In all FPGA based edge detection methods which rely on the Gaussian weighted average function as the
filtering stage, the efficiency of pipelining in the entire method, and therefore the minimum number of clock cycles
taken to obtain the edge detected image, depends on the number of clock cycles required to obtain a filtered image
pixel at the output of Gaussian filter. Hence, in FPGA edge detection which uses Gaussian filtering the limit of
ultimate execution speed in terms of its second parameter – minimum number of clock cycles, is: a filtered image
pixel must be available at the output of Gaussian filter every clock cycle at the maximum possible operating
frequency. Because both the size of Gaussian filter and the magnitude of its coefficients are variables, achieving a
filtered pixel per clock cycle depends on the organization of Gaussian filtering computations and the indispensable
integer arithmetic operations in the weighted average function. In this respect parallel addition has a very important
role.
 So far, in the studies of FPGA edge detection which uses Gaussian filtering the problem of parallel addition has
never been addressed with respect to the maximum operating frequency and the minimum number of clock cycles.
In [1] n-bit parallel adder is designed using Xilinx IP core function and implemented in Virtex-5. In [2] studied are
approximate adders for Gaussian filter which are designed in hardware using only shifts and additions. The adder
tree is implemented using a ripple carry adder based approximate adder and an error tolerant adder. The approximate
architectures are compared with the precise implementation of Gaussian filter. In [3] the carry chains of hard adders
are analyzed. It is pointed out that for simple adders carry chains increase performance by a factor of four or more,
but for larger designs the overall performance improvement is roughly 15%. In [4] designed and simulated is a
multi-operand carry save adder using carry look-ahead adder instead of the usual ripple carry adder. It is found that

© Journal of the Technical University - Sofia
 Plovdiv branch, Bulgaria
 “Fundamental Sciences and Applications”
 Vol. 28, 2022

 1

speed increases by 10%. In [5] presented are different approaches to the implementation of generic carry-save
compressor trees in FPGAs. They are used to design parallel multi-operand redundant adders. Analyzed is a novel
linear array structure, which efficiently uses the fast carry-chain resources. A detailed study is provided for a wide
range of bit widths and large number of operands. On the basis of comparison with binary and ternary carry
propagate adder trees it is argued that a considerable increase in speed is achieved for 16-bit and 64-bit input data
widths. In [6] proposed are high-radix parallel prefix adders and modular adders which utilize the fast carry chains
in FPGA. In [7] proposed is an approach in which the carry chain length is compressed to N/2. It is found that the
proposed adder is faster than a normal adder for a word length larger than 64 bits in Virtex-6. In [8] multi-operand
adder delay is analyzed in terms of various methods of optimizations in multi-operand addition. It is pointed out that
multi-operand adders are generally implemented as array adders or adder tree structure. Different multi-operand
adders are assessed in terms of propagation delay, power consumption and resource utilization in Virtex-6. It is
found that Wallace tree adder is the fastest adder and consumes the least amount of power and resources. In [9] it is
argued that carry look ahead adder, carry select adder, carry save adder and carry skip adder are the most popular
high speed adders. Proposed is a carry save adder with multi-operand addition in which the carry is saved and
propagated down to the next stage. The final sum calculation stage in the carry save adder is implemented in this
study using ripple carry adder, carry look ahead adder and carry select adder. Comparison in terms of power, area
and delay is conducted for addition of four 4-bit numbers, four 8-bit numbers, four 16-bit numbers and four 32-bit
numbers.
 The objective of this paper is to present a research into parallel addition with respect to the concept of ultimate
execution speed of FPGA edge detection which relies on the Gaussian weighted average function as the filtering
stage. The focus is on the two parameters of ultimate execution speed: maximum operating frequency maxF and
minimum number of clock cycles required to guarantee mathematically accurate result minnTclk . Due to the
computational specifics of weighed average function, in FPGA edge detection which uses Gaussian filtering the
adding of all convolution results in parallel is critical to the goal of achieving ultimate execution speed. Thus the
tasks are: (1) explore the capabilities of parallel addition to contribute to the goal of securing a Gaussian filtered
pixel every clock cycle at maxF ; (2) define the impact of parallel addition on the organization of Gaussian filtering
computations. The explorations are conducted on the basis of ten Intel (Altera) FPGA families. Used tools: Scilab,
Intel (Altera) Quartus, TimeQuest Timing Analyzer, ModelSim. The hardware description language is VHDL.
Relevant to the analyses and conclusions arrived at are gray scale images.

2. PARALLEL ADDITION IN FPGA BASED EDGE DETECTION WHICH USES
GAUSSIAN FILTERING

 The computation of Gaussian weighted average function depends on these integer arithmetic operations:
multiplication, addition, division. maxF of FPGA based edge detection which uses Gaussian filtering is defined by
the maximum operating frequency of multiplication executed by hard multiplier)(max hardMultF . It is device
dependent. Therefore, for parallel addition it is required that

)()(maxmax hardMultFParalladdF (1)
where

)(max parallAddF is the maximum operating frequency of parallel addition.

 Because pipelining efficiency of FPGA based edge detection which uses Gaussian filtering is a function of

minnTclk of weighted average function, in order to obtain a filtered image pixel at the output of Gaussian filter every
clock cycle the following basic assumptions must be fulfilled:

1. Multiplication is executed within a single clock cycle
2. All image pixels in the square neighborhood defined by Gaussian filter are accessible within a single clock

cycle
3. Division is executed within a single clock cycle.

 2

Copyright © 2022 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

 Assumptions #1 and #3 depend entirely on the computational mechanism of multiplication and division
algorithms used in the weighted average function. Assumption # 2 depends on the organization of computations in
Gaussian filtering. minnTclk of FPGA based edge detection is device independent. It is impacted only by the
organization of computations in each edge detection module and minnTclk of each concrete integer arithmetic
operation. Therefore, with respect to parallel addition in Gaussian filtering the goal of ultimate execution speed
requires that:
 1)(min parallAddnTclk (2)
where

)(min parallAddnTclk is the minimum number of clock cycles required for parallel addition to secure
 mathematically accurate result.

 With respect to the order of execution of integer arithmetic operations, there are two general approaches to
FPGA based weighted average computations:

 Distributive law is used

C
i

N

i coeff

C

S
R

1

 (3)

where

CN is the number of convolutions,

iCR is a convolution result,

coeffS is the sum of filter’s coefficients.

 Distributive law is not used

coeff

N

i
C

S

R
c

i
1 (4)

 Thus FPGA based parallel addition must be explored for satisfying expressions (1) and (2) under the test
conditions determined by approaches (3) and (4).

3. EXPLORING)(max parallAddF AND)(min parallAddnTclk IN FPGA

 Methodology:
)(max hardMultF of 18x18 multiplier is explored and defined for the targeted Intel (Altera) FPGA families.

Lpm_mult megafunction is used to implement the hard multiplier in Cyclone II-V and Stratix I-V. There are no hard
multipliers in Cyclone FPGA family. In Cyclone family multipliers are implemented with Lpm_mult megafunction
using logic resources only. Used are the hard multipliers (embedded and DSP based) with symmetric inputs
according to their availability in each particular FPGA family. All obtained results are for the highest speed grade in
a particular FPGA family. All tests are performed for the entire range of possible input values defined by the inputs
of 18x18 hard of multiplier.

 Lpm_parallel_add megafunction is used to implement a purely combinational parallel adder
 Parallel addition is executed within a single clock cycle
 The number of inputs is defined by the Gaussian filter size zz * , z is an odd number and 3z
 Maximum input data width for (3) is defined by the largest size of a Gaussian filtered pixel. Therefore,

maximum input data width for (3) is 8 bits.

speed increases by 10%. In [5] presented are different approaches to the implementation of generic carry-save
compressor trees in FPGAs. They are used to design parallel multi-operand redundant adders. Analyzed is a novel
linear array structure, which efficiently uses the fast carry-chain resources. A detailed study is provided for a wide
range of bit widths and large number of operands. On the basis of comparison with binary and ternary carry
propagate adder trees it is argued that a considerable increase in speed is achieved for 16-bit and 64-bit input data
widths. In [6] proposed are high-radix parallel prefix adders and modular adders which utilize the fast carry chains
in FPGA. In [7] proposed is an approach in which the carry chain length is compressed to N/2. It is found that the
proposed adder is faster than a normal adder for a word length larger than 64 bits in Virtex-6. In [8] multi-operand
adder delay is analyzed in terms of various methods of optimizations in multi-operand addition. It is pointed out that
multi-operand adders are generally implemented as array adders or adder tree structure. Different multi-operand
adders are assessed in terms of propagation delay, power consumption and resource utilization in Virtex-6. It is
found that Wallace tree adder is the fastest adder and consumes the least amount of power and resources. In [9] it is
argued that carry look ahead adder, carry select adder, carry save adder and carry skip adder are the most popular
high speed adders. Proposed is a carry save adder with multi-operand addition in which the carry is saved and
propagated down to the next stage. The final sum calculation stage in the carry save adder is implemented in this
study using ripple carry adder, carry look ahead adder and carry select adder. Comparison in terms of power, area
and delay is conducted for addition of four 4-bit numbers, four 8-bit numbers, four 16-bit numbers and four 32-bit
numbers.
 The objective of this paper is to present a research into parallel addition with respect to the concept of ultimate
execution speed of FPGA edge detection which relies on the Gaussian weighted average function as the filtering
stage. The focus is on the two parameters of ultimate execution speed: maximum operating frequency maxF and
minimum number of clock cycles required to guarantee mathematically accurate result minnTclk . Due to the
computational specifics of weighed average function, in FPGA edge detection which uses Gaussian filtering the
adding of all convolution results in parallel is critical to the goal of achieving ultimate execution speed. Thus the
tasks are: (1) explore the capabilities of parallel addition to contribute to the goal of securing a Gaussian filtered
pixel every clock cycle at maxF ; (2) define the impact of parallel addition on the organization of Gaussian filtering
computations. The explorations are conducted on the basis of ten Intel (Altera) FPGA families. Used tools: Scilab,
Intel (Altera) Quartus, TimeQuest Timing Analyzer, ModelSim. The hardware description language is VHDL.
Relevant to the analyses and conclusions arrived at are gray scale images.

2. PARALLEL ADDITION IN FPGA BASED EDGE DETECTION WHICH USES
GAUSSIAN FILTERING

 The computation of Gaussian weighted average function depends on these integer arithmetic operations:
multiplication, addition, division. maxF of FPGA based edge detection which uses Gaussian filtering is defined by
the maximum operating frequency of multiplication executed by hard multiplier)(max hardMultF . It is device
dependent. Therefore, for parallel addition it is required that

)()(maxmax hardMultFParalladdF (1)
where

)(max parallAddF is the maximum operating frequency of parallel addition.

 Because pipelining efficiency of FPGA based edge detection which uses Gaussian filtering is a function of

minnTclk of weighted average function, in order to obtain a filtered image pixel at the output of Gaussian filter every
clock cycle the following basic assumptions must be fulfilled:

1. Multiplication is executed within a single clock cycle
2. All image pixels in the square neighborhood defined by Gaussian filter are accessible within a single clock

cycle
3. Division is executed within a single clock cycle.

 3

Copyright © 2022 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

 Maximum input data width for (4) is equal to the maximum output of 18x18 hard multiplier according to

 (5)
where

CL is the largest Gaussian coefficient value

PL is the largest gray scale image pixel value.

 Therefore, maximum input data width for (4) is 25 bits.
 The obtained results are shown in Table 1, Table 2, Table 3 and Table 4.

TABLE 1.)(max hardMultF of 18x18 hard multiplier

FPGA family)(max hardMultF of 18x18 hard multiplier (in MHz)

Cyclone -
Cyclone II 248
Cyclone III 291
Cyclone IV 292
Cyclone V 295
Stratix 278
Stratix II 401
Stratix III 503
Stratix IV 505
Stratix V 507

 In Cyclone FPGA family, the maximum operating frequency of logic elements based multiplier is obtained for
multiplier of size 16x16. It is 132 MHz.

)12*(2* 817 PC LL

TABLE 2.)(max parallAddF for input data width = 8 bits and Gaussian filter of sizes: 3x3, 5x5, 7x7, 9x9

FPGA family

)(max parallAddF
for input width = 8
bits and Gaussian

filter 3x3
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 5x5
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 7x7
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 9x9
(in MHz)

Cyclone 275 239 201 164
Cyclone II 389 353 318 282
Cyclone III 462 422 379 338
Cyclone IV 470 426 375 334
Cyclone V 479 433 382 338
Stratix 417 389 351 316
Stratix II 565 531 489 444
Stratix III 712 664 610 561
Stratix IV 761 721 615 561
Stratix V 784 732 619 563

 4

Copyright © 2022 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

TABLE 3.)(max parallAddF for input data width = 8 bits and Gaussian filter of sizes: 11x11, 13x13,
15x15, 17x17

FPGA family

)(max parallAddF
for input width = 8
bits and Gaussian

filter 11x11
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 13x13
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 15x15
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 17x17
(in MHz)

Cyclone 163 127 109 41
Cyclone II 279 244 221 178
Cyclone III 334 289 266 207
Cyclone IV 329 290 268 209
Cyclone V 334 292 273 212
Stratix 310 275 255 192
Stratix II 441 399 372 312
Stratix III 549 501 473 430
Stratix IV 556 503 475 432
Stratix V 559 505 479 439

TABLE 4.)(max parallAddF for input data width = 25 bits and Gaussian filter of sizes: 3x3, 5x5, 7x7,
9x9

FPGA family

)(max parallAddF
for input width = 8
bits and Gaussian

filter 3x3
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 5x5
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 7x7
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 9x9
(in MHz)

Cyclone 161 122 81 39
Cyclone II 262 221 169 121
Cyclone III 314 261 214 172
Cyclone IV 316 266 217 174
Cyclone V 318 269 219 178
Stratix 294 253 212 171
Stratix II 422 372 338 295
Stratix III 513 479 435 388
Stratix IV 534 485 441 392
Stratix V 545 491 446 399

4. ANALYSIS OF RESULTS

 The obtained results for implementing parallel addition by using Lpm_parallel_add megafunction show that:
)(max parallAddF is impacted by the size of Gaussian filter
)(max parallAddF is inversely proportional to the number of addends
)(max parallAddF is inversely proportional to the input data width
 For the same size of Gaussian filter)(max parallAddF is higher when the organization of computations in

weighted average function is based on (3)
 When the organization of computations in Gaussian filtering is based on (3)

 Maximum input data width for (4) is equal to the maximum output of 18x18 hard multiplier according to

 (5)
where

CL is the largest Gaussian coefficient value

PL is the largest gray scale image pixel value.

 Therefore, maximum input data width for (4) is 25 bits.
 The obtained results are shown in Table 1, Table 2, Table 3 and Table 4.

TABLE 1.)(max hardMultF of 18x18 hard multiplier

FPGA family)(max hardMultF of 18x18 hard multiplier (in MHz)

Cyclone -
Cyclone II 248
Cyclone III 291
Cyclone IV 292
Cyclone V 295
Stratix 278
Stratix II 401
Stratix III 503
Stratix IV 505
Stratix V 507

 In Cyclone FPGA family, the maximum operating frequency of logic elements based multiplier is obtained for
multiplier of size 16x16. It is 132 MHz.

)12*(2* 817 PC LL

TABLE 2.)(max parallAddF for input data width = 8 bits and Gaussian filter of sizes: 3x3, 5x5, 7x7, 9x9

FPGA family

)(max parallAddF
for input width = 8
bits and Gaussian

filter 3x3
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 5x5
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 7x7
(in MHz)

)(max parallAddF
for input width = 8
bits and Gaussian

filter 9x9
(in MHz)

Cyclone 275 239 201 164
Cyclone II 389 353 318 282
Cyclone III 462 422 379 338
Cyclone IV 470 426 375 334
Cyclone V 479 433 382 338
Stratix 417 389 351 316
Stratix II 565 531 489 444
Stratix III 712 664 610 561
Stratix IV 761 721 615 561
Stratix V 784 732 619 563

 5

Copyright © 2022 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

)()(maxmax hardMultFparallAddF for six Gaussian filter sizes: 3x3, 5x5, 7x7, 9x9, 11x11, 13x13
 When the organization of computations in Gaussian filtering is based on (4)

)()(maxmax hardMultFparallAddF only for Gaussian filter of size 3x3
 In order to increase the number of Gaussian filter sizes which can be used with (3) and (4) the parallel

addition must be pipelined.
 Therefore, the data for parallel addition in Table 2, Table 3 and Table 4 as compared to the data in Table 1
define that it is expression (3) on which the organization of computations must be based. Even when using
expression (3) the goal of ultimate execution speed in FPGA based edge detection can be achieved only for a limited
number of Gaussian filter sizes. Pipelining of parallel addition cannot be applied because in this case the task of
securing a filtered image pixel at the output of Gaussian filter every clock cycle cannot be fulfilled.

CONCLUSION

 Presented is a research into parallel addition with respect to the goal of achieving ultimate execution speed of
FPGA edge detection which uses Gaussian weighted average function as the filtering stage. With respect to the
computational specifics of weighed average function, the exploration of maximum operating frequency of parallel
addition in comparison with the maximum operating frequency of 18x18 hard multiplier in ten Intel (Altera) FPGA
families shows that the non-pipelined parallel addition can be used with a limited number of filter sizes when
Gaussian filtering is based on distributive law. If distributive law is not used, non-pipelined parallel addition can be
used only with the smallest Gaussian filter size. Therefore, in terms of parallel addition, the organization of
computations in Gaussian filtering must be based on distributive law.

REFERENCES

1. B. Khaleelu Rehman, Waaiz Mohammad, Mudasar Basha, Salauddin Mohammad, Hardware Implementation
 of Parallel adder/Subtarctor and Complex Muliplier using Xilinx IP-Core, International Journal of Technology,
 Management & Knowledge Processing, Vol. 1, Issue 1, 2021, pp. 6-11
2. J. de Oliveira, L. Soares, E. Costa and S. Bampi, Exploiting approximate adder circuits for power-efficient
 Gaussian and Gradient filters for Canny edge detector algorithm, 2016 IEEE 7th Latin American Symposium
 on Circuits & Systems (LASCAS), 2016, pp. 379-382
3. J. Luu et al., On Hard Adders and Carry Chains in FPGAs, 2014 IEEE 22nd Annual International Symposium
 on Field-Programmable Custom Computing Machines, 2014, pp. 52-59
4. Komal, Gautam A. K., Design and simulation of Carry Save Adder using VHDL, International Journal of
 Advance Research, Ideas and Innovations in Technology, Volume 5, Issue 3, 2019, pp. 1229-1233
5. Mudasir M, Tulasi Sanath Kumar, Multioperand Redundant Adders on FPGAs, International Journal of
 Scientific Engineering and Technology Research Volume.03, Issue No.47, December-2014, pp. 9462-9466
6. M. Rogawski, E. Homsirikamol and K. Gaj, A novel modular adder for one thousand bits and more using fast
 carry chains of modern FPGAs, 2014 24th International Conference on Field Programmable Logic and
 Applications (FPL), 2014, pp. 1-8
7. Petter Källström and Oscar Gustafsson, Fast and Area Efficient Adder for Wide Data in Recent Xilinx FPGAs,
 2016, 26th International Conference on Field-Programmable Logic and Applications, Lausanne, Switzerland
 August 29 - September 2, 2016, pp. 1-4
8. S. Kannappan, S. Aruna Mastani, A Survey on Multi-operand Adder, Acta Technica Corvinensis - Bulletin of
 Engineering, Tome XIII, Fascicule 2, April – June 2020, pp. 65–68
9. VS. Balaji, Har Narayan Upadhyay, FPGA Implementation of High Speed and Low Power Carry Save Adder,
 Special Issue Energy, Environment, and Engineering Section: Recent Advances in Big Data Analysis (ABDA)
 Vol. 7 (11), 2016, 151-159

 6

Copyright © 2022 by Technical University - Sofia, Plovdiv branch, Bulgaria Online ISSN 2603-459X

